These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 33985329)

  • 1. Computational Discovery of New 2D Materials Using Deep Learning Generative Models.
    Song Y; Siriwardane EMD; Zhao Y; Hu J
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53303-53313. PubMed ID: 33985329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of New Inorganic Crystals with the Desired Composition Using Deep Learning.
    Han S; Lee J; Han S; Moosavi SM; Kim J; Park C
    J Chem Inf Model; 2023 Sep; 63(18):5755-5763. PubMed ID: 37683188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Discovery of Novel Cubic Crystal Materials Using Deep Generative Neural Networks.
    Zhao Y; Al-Fahdi M; Hu M; Siriwardane EMD; Song Y; Nasiri A; Hu J
    Adv Sci (Weinh); 2021 Oct; 8(20):e2100566. PubMed ID: 34351707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generative Design of Inorganic Compounds Using Deep Diffusion Language Models.
    Dong R; Fu N; Siriwardane EMD; Hu J
    J Phys Chem A; 2024 Jul; ():. PubMed ID: 39008628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revealing the Formation Energy-Exfoliation Energy-Structure Correlation of MAB Phases Using Machine Learning and DFT.
    Siriwardane EMD; Joshi RP; Kumar N; Çakır D
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29424-29431. PubMed ID: 32495630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generative Adversarial Networks for Crystal Structure Prediction.
    Kim S; Noh J; Gu GH; Aspuru-Guzik A; Jung Y
    ACS Cent Sci; 2020 Aug; 6(8):1412-1420. PubMed ID: 32875082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unveiling two-dimensional magnesium hydride as a hydrogen storage material
    Lee J; Sung D; Chung YK; Song SB; Huh J
    Nanoscale Adv; 2022 May; 4(10):2332-2338. PubMed ID: 36133700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Synthesis of 2D Metal Carbides and Nitrides (MXenes) and Their Precursors with Positive and Unlabeled Machine Learning.
    Frey NC; Wang J; Vega Bellido GI; Anasori B; Gogotsi Y; Shenoy VB
    ACS Nano; 2019 Mar; 13(3):3031-3041. PubMed ID: 30830760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Discovery of TTF Molecules with Deep Generative Models.
    Yakubovich A; Odinokov A; Nikolenko S; Jung Y; Choi H
    Front Chem; 2021; 9():800133. PubMed ID: 35004615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Generative Approach to Materials Discovery, Design, and Optimization.
    Menon D; Ranganathan R
    ACS Omega; 2022 Aug; 7(30):25958-25973. PubMed ID: 35936396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncertainty-Quantified Hybrid Machine Learning/Density Functional Theory High Throughput Screening Method for Crystals.
    Noh J; Gu GH; Kim S; Jung Y
    J Chem Inf Model; 2020 Apr; 60(4):1996-2003. PubMed ID: 32208718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling a Crystal Graph Multilayer Descriptor to Active Learning for Rapid Discovery of 2D Ferromagnetic Semiconductors/Half-Metals/Metals.
    Lu S; Zhou Q; Guo Y; Zhang Y; Wu Y; Wang J
    Adv Mater; 2020 Jul; 32(29):e2002658. PubMed ID: 32538514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning and density functional theory simulation of the electronic structural properties for novel quaternary semiconductors.
    Gao M; Cai B; Liu G; Xu L; Zhang S; Zeng H
    Phys Chem Chem Phys; 2023 Mar; 25(13):9123-9130. PubMed ID: 36938685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bandgap prediction of two-dimensional materials using machine learning.
    Zhang Y; Xu W; Liu G; Zhang Z; Zhu J; Li M
    PLoS One; 2021; 16(8):e0255637. PubMed ID: 34388173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From bulk effective mass to 2D carrier mobility accurate prediction via adversarial transfer learning.
    Chen X; Lu S; Chen Q; Zhou Q; Wang J
    Nat Commun; 2024 Jun; 15(1):5391. PubMed ID: 38918387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing.
    Frey NC; Akinwande D; Jariwala D; Shenoy VB
    ACS Nano; 2020 Oct; 14(10):13406-13417. PubMed ID: 32897682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target-Driven Design of Deep-UV Nonlinear Optical Materials via Interpretable Machine Learning.
    Wu M; Tikhonov E; Tudi A; Kruglov I; Hou X; Xie C; Pan S; Yang Z
    Adv Mater; 2023 Jun; 35(23):e2300848. PubMed ID: 36929243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning strategies for addressing issues with small datasets in 2D materials research: Microbial Corrosion.
    Allen C; Aryal S; Do T; Gautum R; Hasan MM; Jasthi BK; Gnimpieba E; Gadhamshetty V
    Front Microbiol; 2022; 13():1059123. PubMed ID: 36620046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ML-Aided Computational Screening of 2D Materials for Photocatalytic Water Splitting.
    Wang Y; Sorkun MC; Brocks G; Er S
    J Phys Chem Lett; 2024 May; 15(18):4983-4991. PubMed ID: 38691841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel inorganic crystal structures predicted using autonomous simulation agents.
    Ye W; Lei X; Aykol M; Montoya JH
    Sci Data; 2022 Jun; 9(1):302. PubMed ID: 35701432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.