These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33985826)

  • 1. On the Relationship between Spatial Coherence and In Situ Pressure for Abdominal Imaging.
    Zhang B; Pinton GF; Nightingale KR
    Ultrasound Med Biol; 2021 Aug; 47(8):2310-2320. PubMed ID: 33985826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying the Effect of Abdominal Body Wall on In Situ Peak Rarefaction Pressure During Diagnostic Ultrasound Imaging.
    Zhang B; Pinton GF; Deng Y; Nightingale KR
    Ultrasound Med Biol; 2021 Jun; 47(6):1548-1558. PubMed ID: 33722439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying Image Quality Improvement Using Elevated Acoustic Output in B-Mode Harmonic Imaging.
    Deng Y; Palmeri ML; Rouze NC; Trahey GE; Haystead CM; Nightingale KR
    Ultrasound Med Biol; 2017 Oct; 43(10):2416-2425. PubMed ID: 28755792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial coherence in human tissue: implications for imaging and measurement.
    Pinton G; Trahey G; Dahl J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Dec; 61(12):1976-87. PubMed ID: 25474774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo application of short-lag spatial coherence and harmonic spatial coherence imaging in fetal ultrasound.
    Kakkad V; Dahl J; Ellestad S; Trahey G
    Ultrason Imaging; 2015 Apr; 37(2):101-16. PubMed ID: 25116292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial coherence of backscatter for the nonlinearly produced second harmonic for specific transmit apodizations.
    Fedewa RJ; Wallace KD; Holland MR; Jago JR; Ng GC; Rielly MR; Robinson BS; Miller JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 May; 51(5):576-88. PubMed ID: 15217235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-lag Spatial Coherence Ultrasound Imaging with Adaptive Synthetic Transmit Aperture Focusing.
    Zhao J; Wang Y; Yu J; Guo W; Zhang S; Aliabadi S
    Ultrason Imaging; 2017 Jul; 39(4):224-239. PubMed ID: 28068874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial coherence of the nonlinearly generated second harmonic portion of backscatter for a clinical imaging system.
    Fedewa RJ; Wallace KD; Holland MR; Jago JR; Ng GC; Rielly MR; Robinson BS; Miller JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Aug; 50(8):1010-22. PubMed ID: 12952092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harmonic spatial coherence imaging: an ultrasonic imaging method based on backscatter coherence.
    Dahl J; Jakovljevic M; Pinton GF; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):648-59. PubMed ID: 22547276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the Benefit of Elevated Acoustic Output in Harmonic Motion Estimation in Ultrasonic Shear Wave Elasticity Imaging.
    Deng Y; Palmeri ML; Rouze NC; Haystead CM; Nightingale KR
    Ultrasound Med Biol; 2018 Feb; 44(2):303-310. PubMed ID: 29169880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lag-One Coherence as a Metric for Ultrasonic Image Quality.
    Long W; Bottenus N; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Oct; 65(10):1768-1780. PubMed ID: 30010556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic reciprocity of spatial coherence in ultrasound imaging.
    Bottenus N; Üstüner KF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):852-61. PubMed ID: 25965679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-lag spatial coherence combined with eigenspace-based minimum variance beamformer for synthetic aperture ultrasound imaging.
    Wang Y; Zheng C; Peng H; Chen X
    Comput Biol Med; 2017 Dec; 91():267-276. PubMed ID: 29102824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency-Dependent Spatial Coherence in Conventional and Chirp Transmissions.
    Long J; Bottenus N; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 May; 68(5):1707-1720. PubMed ID: 33417541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of dual apodization with cross-correlation on tissue harmonic and pulse inversion harmonic imaging in the presence of phase aberration.
    Shin J; Yen JT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Mar; 60(3):643-9. PubMed ID: 23475931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft-Tissue Aberration Correction for Histotripsy.
    Macoskey JJ; Hall TL; Sukovich JR; Choi SW; Ives K; Johnsen E; Cain CA; Xu Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2073-2085. PubMed ID: 30281443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalized spatial coherence reconstruction for photoacoustic computed tomography.
    Tordera Mora J; Feng X; Nyayapathi N; Xia J; Gao L
    J Biomed Opt; 2021 Apr; 26(4):. PubMed ID: 33880892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-lag spatial coherence of backscattered echoes: imaging characteristics.
    Lediju MA; Trahey GE; Byram BC; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1377-88. PubMed ID: 21768022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial coherence analysis applied to aberration correction using a two-dimensional array system.
    Lacefield JC; Waag RC
    J Acoust Soc Am; 2002 Dec; 112(6):2558-66. PubMed ID: 12508977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occult Regions of Suppressed Coherence in Liver B-Mode Images.
    Offerdahl K; Huber M; Long W; Bottenus N; Nelson R; Trahey G
    Ultrasound Med Biol; 2022 Jan; 48(1):47-58. PubMed ID: 34702640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.