These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 33986148)

  • 1. Cyclic oligoadenylate signalling and regulation by ring nucleases during type III CRISPR defence.
    Athukoralage JS; White MF
    RNA; 2021 May; 27(8):855-67. PubMed ID: 33986148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage.
    Athukoralage JS; McQuarrie S; Grüschow S; Graham S; Gloster TM; White MF
    Elife; 2020 Jun; 9():. PubMed ID: 32597755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of Csm6 ribonuclease by cyclic nucleotide binding: in an emergency, twist to open.
    McQuarrie S; Athukoralage JS; McMahon SA; Graham S; Ackermann K; Bode BE; White MF; Gloster TM
    Nucleic Acids Res; 2023 Oct; 51(19):10590-10605. PubMed ID: 37747760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic properties of CARF-domain proteins in
    Ding J; Schuergers N; Baehre H; Wilde A
    Front Microbiol; 2022; 13():1046388. PubMed ID: 36419420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Type III CRISPR Ancillary Ribonuclease Degrades Its Cyclic Oligoadenylate Activator.
    Athukoralage JS; Graham S; Grüschow S; Rouillon C; White MF
    J Mol Biol; 2019 Jul; 431(15):2894-2899. PubMed ID: 31071326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dynamic interplay of host and viral enzymes in type III CRISPR-mediated cyclic nucleotide signalling.
    Athukoralage JS; Graham S; Rouillon C; Grüschow S; Czekster CM; White MF
    Elife; 2020 Apr; 9():. PubMed ID: 32338598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ring nucleases deactivate type III CRISPR ribonucleases by degrading cyclic oligoadenylate.
    Athukoralage JS; Rouillon C; Graham S; Grüschow S; White MF
    Nature; 2018 Oct; 562(7726):277-280. PubMed ID: 30232454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The CRISPR ancillary effector Can2 is a dual-specificity nuclease potentiating type III CRISPR defence.
    Zhu W; McQuarrie S; Grüschow S; McMahon SA; Graham S; Gloster TM; White MF
    Nucleic Acids Res; 2021 Mar; 49(5):2777-2789. PubMed ID: 33590098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic oligoadenylate signalling mediates Mycobacterium tuberculosis CRISPR defence.
    Grüschow S; Athukoralage JS; Graham S; Hoogeboom T; White MF
    Nucleic Acids Res; 2019 Sep; 47(17):9259-9270. PubMed ID: 31392987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of cyclic oligoadenylate synthesis by the
    Nasef M; Muffly MC; Beckman AB; Rowe SJ; Walker FC; Hatoum-Aslan A; Dunkle JA
    RNA; 2019 Aug; 25(8):948-962. PubMed ID: 31076459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fuse to defuse: a self-limiting ribonuclease-ring nuclease fusion for type III CRISPR defence.
    Samolygo A; Athukoralage JS; Graham S; White MF
    Nucleic Acids Res; 2020 Jun; 48(11):6149-6156. PubMed ID: 32347937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation and self-inactivation mechanisms of the cyclic oligoadenylate-dependent CRISPR ribonuclease Csm6.
    Garcia-Doval C; Schwede F; Berk C; Rostøl JT; Niewoehner O; Tejero O; Hall J; Marraffini LA; Jinek M
    Nat Commun; 2020 Mar; 11(1):1596. PubMed ID: 32221291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiviral type III CRISPR signalling via conjugation of ATP and SAM.
    Chi H; Hoikkala V; Grüschow S; Graham S; Shirran S; White MF
    Nature; 2023 Oct; 622(7984):826-833. PubMed ID: 37853119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Type III CRISPR-Cas: beyond the Cas10 effector complex.
    Stella G; Marraffini L
    Trends Biochem Sci; 2024 Jan; 49(1):28-37. PubMed ID: 37949766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanism of allosteric activation of the CRISPR ribonuclease Csm6 by cyclic tetra-adenylate.
    Du L; Zhu Q; Lin Z
    EMBO J; 2024 Jan; 43(2):304-315. PubMed ID: 38177499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis of cyclic oligoadenylate degradation by ancillary Type III CRISPR-Cas ring nucleases.
    Molina R; Jensen ALG; Marchena-Hurtado J; López-Méndez B; Stella S; Montoya G
    Nucleic Acids Res; 2021 Dec; 49(21):12577-12590. PubMed ID: 34850143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the cyclic oligoadenylate signaling pathway of type III CRISPR systems.
    Rouillon C; Athukoralage JS; Graham S; Grüschow S; White MF
    Methods Enzymol; 2019; 616():191-218. PubMed ID: 30691643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR antiphage defence mediated by the cyclic nucleotide-binding membrane protein Csx23.
    Grüschow S; McQuarrie S; Ackermann K; McMahon S; Bode BE; Gloster TM; White MF
    Nucleic Acids Res; 2024 Apr; 52(6):2761-2775. PubMed ID: 38471818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The SAVED domain of the type III CRISPR protease CalpL is a ring nuclease.
    Binder SC; Schneberger N; Schmitz M; Engeser M; Geyer M; Rouillon C; Hagelueken G
    Nucleic Acids Res; 2024 Sep; 52(17):10520-10532. PubMed ID: 39166476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective degradation of phage RNAs by the Csm6 ribonuclease provides robust type III CRISPR immunity in Streptococcus thermophilus.
    Johnson KA; Garrett SC; Noble-Molnar C; Elgarhi HA; Woodside WT; Cooper C; Zhang X; Olson S; Catchpole RJ; Graveley BR; Terns MP
    Nucleic Acids Res; 2024 Nov; 52(20):12549-12564. PubMed ID: 39360614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.