These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33986274)

  • 21. Carbon dimers as the dominant feeding species in epitaxial growth and morphological phase transition of graphene on different Cu substrates.
    Wu P; Zhang Y; Cui P; Li Z; Yang J; Zhang Z
    Phys Rev Lett; 2015 May; 114(21):216102. PubMed ID: 26066446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sub-nano to nanometer wear and tribocorrosion of titanium oxide-metal surfaces by in situ atomic force microscopy.
    Liu Y; Zhu D; Gilbert JL
    Acta Biomater; 2021 May; 126():477-484. PubMed ID: 33812071
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uneven Oxidation and Surface Reconstructions on Stepped Cu(100) and Cu(110).
    Li M; Curnan MT; Saidi WA; Yang JC
    Nano Lett; 2022 Feb; 22(3):1075-1082. PubMed ID: 35086335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In situ ultra-high vacuum transmission electron microscopy studies of the transient oxidation stage of Cu and Cu alloy thin films.
    Yang JC; Zhou G
    Micron; 2012 Nov; 43(11):1195-210. PubMed ID: 22537718
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics of Antimonene-Graphene Van Der Waals Growth.
    Fortin-Deschênes M; Jacobberger RM; Deslauriers CA; Waller O; Bouthillier É; Arnold MS; Moutanabbir O
    Adv Mater; 2019 May; 31(21):e1900569. PubMed ID: 30968486
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Taper PbZr(0.2)Ti(0.8)O3 nanowire arrays: from controlled growth by pulsed laser deposition to piezopotential measurements.
    Chen YZ; Liu TH; Chen CY; Liu CH; Chen SY; Wu WW; Wang ZL; He JH; Chu YH; Chueh YL
    ACS Nano; 2012 Mar; 6(3):2826-32. PubMed ID: 22375956
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Freestanding epitaxial SrTiO
    Yoon H; Truttmann TK; Liu F; Matthews BE; Choo S; Su Q; Saraswat V; Manzo S; Arnold MS; Bowden ME; Kawasaki JK; Koester SJ; Spurgeon SR; Chambers SA; Jalan B
    Sci Adv; 2022 Dec; 8(51):eadd5328. PubMed ID: 36563139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111).
    Chen TA; Chuu CP; Tseng CC; Wen CK; Wong HP; Pan S; Li R; Chao TA; Chueh WC; Zhang Y; Fu Q; Yakobson BI; Chang WH; Li LJ
    Nature; 2020 Mar; 579(7798):219-223. PubMed ID: 32132712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiscale modeling of self-assembled monolayers of thiophenes on electronic material surfaces.
    Haran M; Goose JE; Clote NP; Clancy P
    Langmuir; 2007 Apr; 23(9):4897-909. PubMed ID: 17397195
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scanning tunnelling microscopy of epitaxial nanostructures.
    Marshall MS; Castell MR
    Chem Soc Rev; 2014 Apr; 43(7):2226-39. PubMed ID: 24504156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-Resolution Microscopical Studies of Contact Killing Mechanisms on Copper-Based Surfaces.
    Chang T; Babu RP; Zhao W; Johnson CM; Hedström P; Odnevall I; Leygraf C
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):49402-49413. PubMed ID: 34618446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanometer-Thick Gold on Silicon as a Proxy for Single-Crystal Gold for the Electrodeposition of Epitaxial Cuprous Oxide Thin Films.
    Switzer JA; Hill JC; Mahenderkar NK; Liu YC
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15828-37. PubMed ID: 27232100
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution-phase epitaxial growth of quasi-monocrystalline cuprous oxide on metal nanowires.
    Sciacca B; Mann SA; Tichelaar FD; Zandbergen HW; van Huis MA; Garnett EC
    Nano Lett; 2014 Oct; 14(10):5891-8. PubMed ID: 25233392
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterogeneous Pyrolysis: A Route for Epitaxial Growth of hBN Atomic Layers on Copper Using Separate Boron and Nitrogen Precursors.
    Siegel G; Ciobanu CV; Narayanan B; Snure M; Badescu SC
    Nano Lett; 2017 Apr; 17(4):2404-2413. PubMed ID: 28287745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cu2O island shape transition during Cu-Au alloy oxidation.
    Zhou GW; Wang L; Birtcher RC; Baldo PM; Pearson JE; Yang JC; Eastman JA
    Phys Rev Lett; 2006 Jun; 96(22):226108. PubMed ID: 16803330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contrasting behavior of carbon nucleation in the initial stages of graphene epitaxial growth on stepped metal surfaces.
    Chen H; Zhu W; Zhang Z
    Phys Rev Lett; 2010 May; 104(18):186101. PubMed ID: 20482191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms, kinetics, and dynamics of oxidation and reactions on oxide surfaces investigated by scanning probe microscopy.
    Altman EI; Schwarz UD
    Adv Mater; 2010 Jul; 22(26-27):2854-69. PubMed ID: 20379972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In situ growth of cellular two-dimensional silicon oxide on metal substrates.
    Ben Romdhane F; Björkman T; Rodríguez-Manzo JA; Cretu O; Krasheninnikov AV; Banhart F
    ACS Nano; 2013 Jun; 7(6):5175-80. PubMed ID: 23692544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trimethylaluminum and Oxygen Atomic Layer Deposition on Hydroxyl-Free Cu(111).
    Gharachorlou A; Detwiler MD; Gu XK; Mayr L; Klötzer B; Greeley J; Reifenberger RG; Delgass WN; Ribeiro FH; Zemlyanov DY
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16428-39. PubMed ID: 26158796
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduction of Cu2O islands grown on a Cu(100) surface through vacuum annealing.
    Zhou G; Yang JC
    Phys Rev Lett; 2004 Nov; 93(22):226101. PubMed ID: 15601101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.