These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 33986429)

  • 1. Predicting sex from retinal fundus photographs using automated deep learning.
    Korot E; Pontikos N; Liu X; Wagner SK; Faes L; Huemer J; Balaskas K; Denniston AK; Khawaja A; Keane PA
    Sci Rep; 2021 May; 11(1):10286. PubMed ID: 33986429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images.
    Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ
    Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study.
    Faes L; Wagner SK; Fu DJ; Liu X; Korot E; Ledsam JR; Back T; Chopra R; Pontikos N; Kern C; Moraes G; Schmid MK; Sim D; Balaskas K; Bachmann LM; Denniston AK; Keane PA
    Lancet Digit Health; 2019 Sep; 1(5):e232-e242. PubMed ID: 33323271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of a deep-learning algorithm for the detection of neovascular age-related macular degeneration from colour fundus photographs.
    Keel S; Li Z; Scheetz J; Robman L; Phung J; Makeyeva G; Aung K; Liu C; Yan X; Meng W; Guymer R; Chang R; He M
    Clin Exp Ophthalmol; 2019 Nov; 47(8):1009-1018. PubMed ID: 31215760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Intelligence-Assisted Early Detection of Retinitis Pigmentosa - the Most Common Inherited Retinal Degeneration.
    Chen TC; Lim WS; Wang VY; Ko ML; Chiu SI; Huang YS; Lai F; Yang CM; Hu FR; Jang JR; Yang CH
    J Digit Imaging; 2021 Aug; 34(4):948-958. PubMed ID: 34244880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Deep Learning Approach for Automated Detection of Geographic Atrophy from Color Fundus Photographs.
    Keenan TD; Dharssi S; Peng Y; Chen Q; Agrón E; Wong WT; Lu Z; Chew EY
    Ophthalmology; 2019 Nov; 126(11):1533-1540. PubMed ID: 31358385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of cardiovascular risk factors from retinal fundus photographs: Validation of a deep learning algorithm in a prospective non-interventional study in Kenya.
    White T; Selvarajah V; Wolfhagen-Sand F; Svangård N; Mohankumar G; Fenici P; Rough K; Onyango N; Lyons K; Mack C; Nduba V; Noorali Saleh M; Abayo I; Siddiqui A; Majdanska-Strzalka M; Kaszubska K; Hegelund-Myrback T; Esterline R; Manzur A; Parker VER
    Diabetes Obes Metab; 2024 Jul; 26(7):2722-2731. PubMed ID: 38618987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A deep-learning model for the assessment of coronary heart disease and related risk factors via the evaluation of retinal fundus photographs].
    Ding YD; Zhang Y; He LQ; Fu M; Zhao X; Huang LK; Wang B; Chen YZ; Wang ZH; Ma ZQ; Zeng Y
    Zhonghua Xin Xue Guan Bing Za Zhi; 2022 Dec; 50(12):1201-1206. PubMed ID: 36517441
    [No Abstract]   [Full Text] [Related]  

  • 9. Metadata information and fundus image fusion neural network for hyperuricemia classification in diabetes.
    Wei J; Xu Y; Wang H; Niu T; Jiang Y; Shen Y; Su L; Dou T; Peng Y; Bi L; Xu X; Wang Y; Liu K
    Comput Methods Programs Biomed; 2024 Nov; 256():108382. PubMed ID: 39213898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting High Coronary Artery Calcium Score From Retinal Fundus Images With Deep Learning Algorithms.
    Son J; Shin JY; Chun EJ; Jung KH; Park KH; Park SJ
    Transl Vis Sci Technol; 2020 Nov; 9(6):28. PubMed ID: 33184590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning for Predicting Refractive Error From Retinal Fundus Images.
    Varadarajan AV; Poplin R; Blumer K; Angermueller C; Ledsam J; Chopra R; Keane PA; Corrado GS; Peng L; Webster DR
    Invest Ophthalmol Vis Sci; 2018 Jun; 59(7):2861-2868. PubMed ID: 30025129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated machine learning model for fundus image classification by health-care professionals with no coding experience.
    Zago Ribeiro L; Nakayama LF; Malerbi FK; Regatieri CVS
    Sci Rep; 2024 May; 14(1):10395. PubMed ID: 38710726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.
    Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR
    JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs.
    Li Z; He Y; Keel S; Meng W; Chang RT; He M
    Ophthalmology; 2018 Aug; 125(8):1199-1206. PubMed ID: 29506863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographs.
    Li F; Yan L; Wang Y; Shi J; Chen H; Zhang X; Jiang M; Wu Z; Zhou K
    Graefes Arch Clin Exp Ophthalmol; 2020 Apr; 258(4):851-867. PubMed ID: 31989285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy Using Fundus Photographs.
    Liu H; Li L; Wormstone IM; Qiao C; Zhang C; Liu P; Li S; Wang H; Mou D; Pang R; Yang D; Zangwill LM; Moghimi S; Hou H; Bowd C; Jiang L; Chen Y; Hu M; Xu Y; Kang H; Ji X; Chang R; Tham C; Cheung C; Ting DSW; Wong TY; Wang Z; Weinreb RN; Xu M; Wang N
    JAMA Ophthalmol; 2019 Dec; 137(12):1353-1360. PubMed ID: 31513266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning Detection of Sea Fan Neovascularization From Ultra-Widefield Color Fundus Photographs of Patients With Sickle Cell Hemoglobinopathy.
    Cai S; Parker F; Urias MG; Goldberg MF; Hager GD; Scott AW
    JAMA Ophthalmol; 2021 Feb; 139(2):206-213. PubMed ID: 33377944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep learning model for the detection of both advanced and early glaucoma using fundus photography.
    Ahn JM; Kim S; Ahn KS; Cho SH; Lee KB; Kim US
    PLoS One; 2018; 13(11):e0207982. PubMed ID: 30481205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning-Based Vascular Aging Prediction From Retinal Fundus Images.
    Wang R; Tan Y; Zhong Z; Rao S; Zhou Z; Zhang L; Zhang C; Chen W; Ruan L; Sun X
    Transl Vis Sci Technol; 2024 Jul; 13(7):10. PubMed ID: 38984914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study.
    Lin D; Xiong J; Liu C; Zhao L; Li Z; Yu S; Wu X; Ge Z; Hu X; Wang B; Fu M; Zhao X; Wang X; Zhu Y; Chen C; Li T; Li Y; Wei W; Zhao M; Li J; Xu F; Ding L; Tan G; Xiang Y; Hu Y; Zhang P; Han Y; Li JO; Wei L; Zhu P; Liu Y; Chen W; Ting DSW; Wong TY; Chen Y; Lin H
    Lancet Digit Health; 2021 Aug; 3(8):e486-e495. PubMed ID: 34325853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.