These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 33986429)

  • 21. Validation of a Deep Learning Model to Screen for Glaucoma Using Images from Different Fundus Cameras and Data Augmentation.
    Asaoka R; Tanito M; Shibata N; Mitsuhashi K; Nakahara K; Fujino Y; Matsuura M; Murata H; Tokumo K; Kiuchi Y
    Ophthalmol Glaucoma; 2019; 2(4):224-231. PubMed ID: 32672542
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs.
    Medeiros FA; Jammal AA; Thompson AC
    Ophthalmology; 2019 Apr; 126(4):513-521. PubMed ID: 30578810
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A deep learning approach for detection of shallow anterior chamber depth based on the hidden features of fundus photographs.
    Yoo TK; Ryu IH; Kim JK; Lee IS; Kim HK
    Comput Methods Programs Biomed; 2022 Jun; 219():106735. PubMed ID: 35305492
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A deep-learning system predicts glaucoma incidence and progression using retinal photographs.
    Li F; Su Y; Lin F; Li Z; Song Y; Nie S; Xu J; Chen L; Chen S; Li H; Xue K; Che H; Chen Z; Yang B; Zhang H; Ge M; Zhong W; Yang C; Chen L; Wang F; Jia Y; Li W; Wu Y; Li Y; Gao Y; Zhou Y; Zhang K; Zhang X
    J Clin Invest; 2022 Jun; 132(11):. PubMed ID: 35642636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms.
    Rim TH; Lee G; Kim Y; Tham YC; Lee CJ; Baik SJ; Kim YA; Yu M; Deshmukh M; Lee BK; Park S; Kim HC; Sabayanagam C; Ting DSW; Wang YX; Jonas JB; Kim SS; Wong TY; Cheng CY
    Lancet Digit Health; 2020 Oct; 2(10):e526-e536. PubMed ID: 33328047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computer-aided recognition of myopic tilted optic disc using deep learning algorithms in fundus photography.
    Cho BH; Lee DY; Park KA; Oh SY; Moon JH; Lee GI; Noh H; Chung JK; Kang MC; Chung MJ
    BMC Ophthalmol; 2020 Oct; 20(1):407. PubMed ID: 33036582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a deep residual learning algorithm to screen for glaucoma from fundus photography.
    Shibata N; Tanito M; Mitsuhashi K; Fujino Y; Matsuura M; Murata H; Asaoka R
    Sci Rep; 2018 Oct; 8(1):14665. PubMed ID: 30279554
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Screening of Moyamoya Disease From Retinal Photographs: Development and Validation of Deep Learning Algorithms.
    Hong J; Yoon S; Shim KW; Park YR
    Stroke; 2024 Mar; 55(3):715-724. PubMed ID: 38258570
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neurologic Dysfunction Assessment in Parkinson Disease Based on Fundus Photographs Using Deep Learning.
    Ahn S; Shin J; Song SJ; Yoon WT; Sagong M; Jeong A; Kim JH; Yu HG
    JAMA Ophthalmol; 2023 Mar; 141(3):234-240. PubMed ID: 36757713
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human Versus Machine: Comparing a Deep Learning Algorithm to Human Gradings for Detecting Glaucoma on Fundus Photographs.
    Jammal AA; Thompson AC; Mariottoni EB; Berchuck SI; Urata CN; Estrela T; Wakil SM; Costa VP; Medeiros FA
    Am J Ophthalmol; 2020 Mar; 211():123-131. PubMed ID: 31730838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Screening and identifying hepatobiliary diseases through deep learning using ocular images: a prospective, multicentre study.
    Xiao W; Huang X; Wang JH; Lin DR; Zhu Y; Chen C; Yang YH; Xiao J; Zhao LQ; Li JO; Cheung CY; Mise Y; Guo ZY; Du YF; Chen BB; Hu JX; Zhang K; Lin XS; Wen W; Liu YZ; Chen WR; Zhong YS; Lin HT
    Lancet Digit Health; 2021 Feb; 3(2):e88-e97. PubMed ID: 33509389
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs.
    Phene S; Dunn RC; Hammel N; Liu Y; Krause J; Kitade N; Schaekermann M; Sayres R; Wu DJ; Bora A; Semturs C; Misra A; Huang AE; Spitze A; Medeiros FA; Maa AY; Gandhi M; Corrado GS; Peng L; Webster DR
    Ophthalmology; 2019 Dec; 126(12):1627-1639. PubMed ID: 31561879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
    Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP
    PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep Learning Identifies High-Quality Fundus Photographs and Increases Accuracy in Automated Primary Open Angle Glaucoma Detection.
    Chuter B; Huynh J; Bowd C; Walker E; Rezapour J; Brye N; Belghith A; Fazio MA; Girkin CA; De Moraes G; Liebmann JM; Weinreb RN; Zangwill LM; Christopher M
    Transl Vis Sci Technol; 2024 Jan; 13(1):23. PubMed ID: 38285462
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of anaemia from retinal fundus images via deep learning.
    Mitani A; Huang A; Venugopalan S; Corrado GS; Peng L; Webster DR; Hammel N; Liu Y; Varadarajan AV
    Nat Biomed Eng; 2020 Jan; 4(1):18-27. PubMed ID: 31873211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A deep learning model for screening type 2 diabetes from retinal photographs.
    Yun JS; Kim J; Jung SH; Cha SA; Ko SH; Ahn YB; Won HH; Sohn KA; Kim D
    Nutr Metab Cardiovasc Dis; 2022 May; 32(5):1218-1226. PubMed ID: 35197214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performance of deep learning for detection of chronic kidney disease from retinal fundus photographs: A systematic review and meta-analysis.
    Tan Y; Ma Y; Rao S; Sun X
    Eur J Ophthalmol; 2024 Mar; 34(2):502-509. PubMed ID: 37671422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Association of Cardiovascular Mortality and Deep Learning-Funduscopic Atherosclerosis Score derived from Retinal Fundus Images.
    Chang J; Ko A; Park SM; Choi S; Kim K; Kim SM; Yun JM; Kang U; Shin IH; Shin JY; Ko T; Lee J; Oh BL; Park KH
    Am J Ophthalmol; 2020 Sep; 217():121-130. PubMed ID: 32222370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accuracy of a Deep Learning System for Classification of Papilledema Severity on Ocular Fundus Photographs.
    Vasseneix C; Najjar RP; Xu X; Tang Z; Loo JL; Singhal S; Tow S; Milea L; Ting DSW; Liu Y; Wong TY; Newman NJ; Biousse V; Milea D;
    Neurology; 2021 Jul; 97(4):e369-e377. PubMed ID: 34011570
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks.
    Burlina PM; Joshi N; Pekala M; Pacheco KD; Freund DE; Bressler NM
    JAMA Ophthalmol; 2017 Nov; 135(11):1170-1176. PubMed ID: 28973096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.