These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33986525)

  • 1. Crop origins explain variation in global agricultural relevance.
    Milla R; Osborne CP
    Nat Plants; 2021 May; 7(5):598-607. PubMed ID: 33986525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disparities among crop species in the evolution of growth rates: the role of distinct origins and domestication histories.
    Gómez-Fernández A; Osborne CP; Rees M; Palomino J; Ingala C; Gómez G; Milla R
    New Phytol; 2022 Jan; 233(2):995-1010. PubMed ID: 34726792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid transgenerational adaptation in response to intercropping reduces competition.
    Stefan L; Engbersen N; Schöb C
    Elife; 2022 Sep; 11():. PubMed ID: 36097813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matches and mismatches between the global distribution of major food crops and climate suitability.
    Mahaut L; Pironon S; Barnagaud JY; Bretagnolle F; Khoury CK; Mehrabi Z; Milla R; Phillips C; Rieseberg LH; Violle C; Renard D
    Proc Biol Sci; 2022 Sep; 289(1983):20221542. PubMed ID: 36168758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How can we harness quantitative genetic variation in crop root systems for agricultural improvement?
    Topp CN; Bray AL; Ellis NA; Liu Z
    J Integr Plant Biol; 2016 Mar; 58(3):213-25. PubMed ID: 26911925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional and global shifts in crop diversity through the Anthropocene.
    Martin AR; Cadotte MW; Isaac ME; Milla R; Vile D; Violle C
    PLoS One; 2019; 14(2):e0209788. PubMed ID: 30726231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shifts and disruptions in resource-use trait syndromes during the evolution of herbaceous crops.
    Milla R; Morente-López J; Alonso-Rodrigo JM; Martín-Robles N; Chapin FS
    Proc Biol Sci; 2014 Oct; 281(1793):. PubMed ID: 25185998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit.
    Thomas CL; Alcock TD; Graham NS; Hayden R; Matterson S; Wilson L; Young SD; Dupuy LX; White PJ; Hammond JP; Danku JM; Salt DE; Sweeney A; Bancroft I; Broadley MR
    BMC Plant Biol; 2016 Oct; 16(1):214. PubMed ID: 27716103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global agricultural intensification during climate change: a role for genomics.
    Abberton M; Batley J; Bentley A; Bryant J; Cai H; Cockram J; de Oliveira AC; Cseke LJ; Dempewolf H; De Pace C; Edwards D; Gepts P; Greenland A; Hall AE; Henry R; Hori K; Howe GT; Hughes S; Humphreys M; Lightfoot D; Marshall A; Mayes S; Nguyen HT; Ogbonnaya FC; Ortiz R; Paterson AH; Tuberosa R; Valliyodan B; Varshney RK; Yano M
    Plant Biotechnol J; 2016 Apr; 14(4):1095-8. PubMed ID: 26360509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncertainties of potentials and recent changes in global yields of major crops resulting from census- and satellite-based yield datasets at multiple resolutions.
    Iizumi T; Kotoku M; Kim W; West PC; Gerber JS; Brown ME
    PLoS One; 2018; 13(9):e0203809. PubMed ID: 30235237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic strategies for improving crop yields.
    Bailey-Serres J; Parker JE; Ainsworth EA; Oldroyd GED; Schroeder JI
    Nature; 2019 Nov; 575(7781):109-118. PubMed ID: 31695205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying the impacts of climate variability and human interventions on crop production and food security in the Yangtze River Basin, China, 1990-2015.
    Xu X; Hu H; Tan Y; Yang G; Zhu P; Jiang B
    Sci Total Environ; 2019 May; 665():379-389. PubMed ID: 30772568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate adaptation by crop migration.
    Sloat LL; Davis SJ; Gerber JS; Moore FC; Ray DK; West PC; Mueller ND
    Nat Commun; 2020 Mar; 11(1):1243. PubMed ID: 32144261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops.
    Meyer RS; DuVal AE; Jensen HR
    New Phytol; 2012 Oct; 196(1):29-48. PubMed ID: 22889076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing rhizosphere microbiomes for drought-resilient crop production.
    de Vries FT; Griffiths RI; Knight CG; Nicolitch O; Williams A
    Science; 2020 Apr; 368(6488):270-274. PubMed ID: 32299947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth and dry matter partitioning response in cereal-legume intercropping under full and limited irrigation regimes.
    Amanullah ; Khalid S; Khalil F; Elshikh MS; Alwahibi MS; Alkahtani J; Imranuddin ; Imran
    Sci Rep; 2021 Jun; 11(1):12585. PubMed ID: 34131225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agrobiodiversity: The living library.
    Gruber K
    Nature; 2017 Apr; 544(7651):S8-S10. PubMed ID: 28445449
    [No Abstract]   [Full Text] [Related]  

  • 18. Phylogenetic escape from pests reduces pesticides on some crop plants.
    Pearse IS; Rosenheim JA
    Proc Natl Acad Sci U S A; 2020 Oct; 117(43):26849-26853. PubMed ID: 33046649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate change has likely already affected global food production.
    Ray DK; West PC; Clark M; Gerber JS; Prishchepov AV; Chatterjee S
    PLoS One; 2019; 14(5):e0217148. PubMed ID: 31150427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prospects of orphan crops in climate change.
    Mabhaudhi T; Chimonyo VGP; Hlahla S; Massawe F; Mayes S; Nhamo L; Modi AT
    Planta; 2019 Sep; 250(3):695-708. PubMed ID: 30868238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.