These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 33987475)
1. Thermostable Cellulase Biosynthesis from Mostafa YS; Alamri SA; Hashem M; Nafady NA; Abo-Elyousr KAM; Mohamed ZA Open Life Sci; 2020; 15():185-197. PubMed ID: 33987475 [TBL] [Abstract][Full Text] [Related]
2. Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid. Alrumman SA Braz J Microbiol; 2016; 47(1):110-9. PubMed ID: 26887233 [TBL] [Abstract][Full Text] [Related]
3. Production of lactic acid from paper sludge by simultaneous saccharification and fermentation. Lee SM; Koo YM; Lin J Adv Biochem Eng Biotechnol; 2004; 87():173-94. PubMed ID: 15217107 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp. Patel MA; Ou MS; Ingram LO; Shanmugam KT Biotechnol Prog; 2005; 21(5):1453-60. PubMed ID: 16209550 [TBL] [Abstract][Full Text] [Related]
5. Raw oil palm frond leaves as cost-effective substrate for cellulase and xylanase productions by Trichoderma asperellum UC1 under solid-state fermentation. Ezeilo UR; Lee CT; Huyop F; Zakaria II; Wahab RA J Environ Manage; 2019 Aug; 243():206-217. PubMed ID: 31096173 [TBL] [Abstract][Full Text] [Related]
6. Production of high concentration of l-lactic acid from oil palm empty fruit bunch by thermophilic Bacillus coagulans JI12. Juturu V; Wu JC Biotechnol Appl Biochem; 2018 Mar; 65(2):145-149. PubMed ID: 28436165 [TBL] [Abstract][Full Text] [Related]
7. Saccharification and hydrolytic enzyme production of alkali pre-treated wheat bran by Trichoderma virens under solid state fermentation. El-Shishtawy RM; Mohamed SA; Asiri AM; Gomaa AB; Ibrahim IH; Al-Talhi HA BMC Biotechnol; 2015 May; 15():37. PubMed ID: 26018951 [TBL] [Abstract][Full Text] [Related]
8. Enhanced cellulase recovery without β-glucosidase supplementation for cellulosic ethanol production using an engineered strain and surfactant. Huang R; Guo H; Su R; Qi W; He Z Biotechnol Bioeng; 2017 Mar; 114(3):543-551. PubMed ID: 27696443 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous saccharification and lactic acid fermentation of the cellulosic fraction of municipal solid waste using Bacillus smithii. Chacón MG; Ibenegbu C; Leak DJ Biotechnol Lett; 2021 Mar; 43(3):667-675. PubMed ID: 33219874 [TBL] [Abstract][Full Text] [Related]
10. Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts. Ou MS; Mohammed N; Ingram LO; Shanmugam KT Appl Biochem Biotechnol; 2009 May; 155(1-3):379-85. PubMed ID: 19156365 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous saccharification and fermentation of cellulose to lactic acid. Abe S; Takagi M Biotechnol Bioeng; 1991 Jan; 37(1):93-6. PubMed ID: 18597311 [TBL] [Abstract][Full Text] [Related]
12. Production of cellulases by Vieira MM; Kadoguchi E; Segato F; da Silva SS; Chandel AK Prep Biochem Biotechnol; 2021; 51(2):153-163. PubMed ID: 32757876 [No Abstract] [Full Text] [Related]
13. Comparison of simultaneous and separate processes: saccharification and thermophilic L-lactate fermentation of catch crop and aquatic plant biomass. Akao S; Maeda K; Nakatani S; Hosoi Y; Nagare H; Maeda M; Fujiwara T Environ Technol; 2012; 33(13-15):1523-9. PubMed ID: 22988611 [TBL] [Abstract][Full Text] [Related]
14. High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition. Hu J; Zhang Z; Lin Y; Zhao S; Mei Y; Liang Y; Peng N Bioresour Technol; 2015 Apr; 182():251-257. PubMed ID: 25704098 [TBL] [Abstract][Full Text] [Related]
15. Erratum to "Thermostable cellulase biosynthesis from Mostafa YS; Alamri SA; Hashem M; Nafady NA; Abo-Elyousr KAM; Mohamed ZA Open Life Sci; 2020; 15(1):798. PubMed ID: 33818580 [TBL] [Abstract][Full Text] [Related]
16. Cellulase production by Aspergillus niger using urban lignocellulosic waste as substrate: Evaluation of different cultivation strategies. Santos GB; de Sousa Francisco Filho Á; Rêgo da Silva Rodrigues J; Rodrigues de Souza R J Environ Manage; 2022 Mar; 305():114431. PubMed ID: 34995940 [TBL] [Abstract][Full Text] [Related]
17. Cost-effective simultaneous saccharification and fermentation of l-lactic acid from bagasse sulfite pulp by Bacillus coagulans CC17. Zhou J; Ouyang J; Xu Q; Zheng Z Bioresour Technol; 2016 Dec; 222():431-438. PubMed ID: 27750196 [TBL] [Abstract][Full Text] [Related]
18. LPMOs in cellulase mixtures affect fermentation strategies for lactic acid production from lignocellulosic biomass. Müller G; Kalyani DC; Horn SJ Biotechnol Bioeng; 2017 Mar; 114(3):552-559. PubMed ID: 27596285 [TBL] [Abstract][Full Text] [Related]
19. Effects of intermittent addition of cellulase for production of L-lactic acid from wastewater sludge by simultaneous saccharification and fermentation. Nakasaki K; Adachi T Biotechnol Bioeng; 2003 May; 82(3):263-70. PubMed ID: 12599252 [TBL] [Abstract][Full Text] [Related]
20. High-Titer Lactic Acid Production by Zhang Z; Li Y; Zhang J; Peng N; Liang Y; Zhao S Microorganisms; 2020 Sep; 8(10):. PubMed ID: 32998448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]