These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 33987596)
1. Complete genome sequence of Kim H; Guevarra RB; Cho JH; Kim HB; Lee JH J Anim Sci Technol; 2021 Jan; 63(1):191-193. PubMed ID: 33987596 [No Abstract] [Full Text] [Related]
2. Complete genome sequence of Doo H; Kim H; Cho JH; Song M; Kim ES; Cho JH; Kim S; Keum GB; Kwak J; Pandey S; Kim HB; Lee JH J Anim Sci Technol; 2023 May; 65(3):679-682. PubMed ID: 37332287 [TBL] [Abstract][Full Text] [Related]
3. Dissolution of xylose metabolism in Lactococcus lactis. Erlandson KA; Park JH; Wissam ; El Khal ; Kao HH; Basaran P; Brydges S; Batt CA Appl Environ Microbiol; 2000 Sep; 66(9):3974-80. PubMed ID: 10966417 [TBL] [Abstract][Full Text] [Related]
4. Complete genome sequences of Ryu S; Kim K; Cho DY; Kim Y; Oh S J Anim Sci Technol; 2022 May; 64(3):599-602. PubMed ID: 35709122 [TBL] [Abstract][Full Text] [Related]
5. Complete genome sequence of Lactococcus lactis subsp. lactis KLDS4. 0325, a bacterium newly isolated from Koumiss in Xinjiang, China. Yang X; Wang Y; Zhou Y; Gao X; Li B; Huo G Wei Sheng Wu Xue Bao; 2014 Dec; 54(12):1406-18. PubMed ID: 25876326 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome Profiling and In Silico Analysis of the Antimicrobial Peptides of the Grasshopper Kim IW; Markkandan K; Lee JH; Subramaniyam S; Yoo S; Park J; Hwang JS J Microbiol Biotechnol; 2016 Nov; 26(11):1863-1870. PubMed ID: 27586527 [TBL] [Abstract][Full Text] [Related]
8. Improved homo L-lactic acid fermentation from xylose by abolishment of the phosphoketolase pathway and enhancement of the pentose phosphate pathway in genetically modified xylose-assimilating Lactococcus lactis. Shinkawa S; Okano K; Yoshida S; Tanaka T; Ogino C; Fukuda H; Kondo A Appl Microbiol Biotechnol; 2011 Sep; 91(6):1537-44. PubMed ID: 21637940 [TBL] [Abstract][Full Text] [Related]
9. Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome. Bolotin A; Mauger S; Malarme K; Ehrlich SD; Sorokin A Antonie Van Leeuwenhoek; 1999; 76(1-4):27-76. PubMed ID: 10532372 [TBL] [Abstract][Full Text] [Related]
11. [Carbohydrate metabolism and lactic acid biosynthesis of Lactococcus lactis subsp. lactis KLDS4.0325]. Yang X; Wang Y; Zhou Y; Gao X; Bailiang L; Huo G Wei Sheng Wu Xue Bao; 2014 Oct; 54(10):1146-54. PubMed ID: 25803891 [TBL] [Abstract][Full Text] [Related]
12. Pheng S; Han HL; Park DS; Chung CH; Kim SG Int J Syst Evol Microbiol; 2020 Jan; 70(1):505-510. PubMed ID: 31651376 [TBL] [Abstract][Full Text] [Related]
13. Complete genome sequence of Kim H; Cho JH; Cho JH; Song M; Shin H; Kim S; Kim ES; Kim HB; Lee JH J Anim Sci Technol; 2021 Jan; 63(1):194-197. PubMed ID: 33987597 [No Abstract] [Full Text] [Related]
14. Lactococcus lactis metabolism and gene expression during growth on plant tissues. Golomb BL; Marco ML J Bacteriol; 2015 Jan; 197(2):371-81. PubMed ID: 25384484 [TBL] [Abstract][Full Text] [Related]
15. Lactococcus taiwanensis sp. nov., a lactic acid bacterium isolated from fresh cummingcordia. Chen YS; Chang CH; Pan SF; Wang LT; Chang YC; Wu HC; Yanagida F Int J Syst Evol Microbiol; 2013 Jul; 63(Pt 7):2405-2409. PubMed ID: 23178728 [TBL] [Abstract][Full Text] [Related]
16. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization. Rygus T; Scheler A; Allmansberger R; Hillen W Arch Microbiol; 1991; 155(6):535-42. PubMed ID: 1719948 [TBL] [Abstract][Full Text] [Related]
17. Open pangenome of Zhai Y; Wei C Front Microbiol; 2022; 13():948138. PubMed ID: 36081802 [No Abstract] [Full Text] [Related]
18. Genomic features of Lactococcus lactis IO-1, a lactic acid bacterium that utilizes xylose and produces high levels of L-lactic acid. Shimizu-Kadota M; Kato H; Shiwa Y; Oshima K; Machii M; Araya-Kojima T; Zendo T; Hattori M; Sonomoto K; Yoshikawa H Biosci Biotechnol Biochem; 2013; 77(9):1804-8. PubMed ID: 24018670 [TBL] [Abstract][Full Text] [Related]
19. Improving xylose utilization of defatted rice bran for nisin production by overexpression of a xylose transcriptional regulator in Lactococcus lactis. Liu J; Ma Z; Zhu H; Caiyin Q; Liang D; Wu H; Huang X; Qiao J Bioresour Technol; 2017 Aug; 238():690-697. PubMed ID: 28499254 [TBL] [Abstract][Full Text] [Related]
20. Heo J; Cho H; Tamura T; Saitou S; Park K; Kim JS; Hong SB; Kwon SW; Kim SJ Int J Syst Evol Microbiol; 2019 Dec; 69(12):3682-3688. PubMed ID: 31644419 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]