These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33987596)

  • 1. Complete genome sequence of
    Kim H; Guevarra RB; Cho JH; Kim HB; Lee JH
    J Anim Sci Technol; 2021 Jan; 63(1):191-193. PubMed ID: 33987596
    [No Abstract]   [Full Text] [Related]  

  • 2. Complete genome sequence of
    Doo H; Kim H; Cho JH; Song M; Kim ES; Cho JH; Kim S; Keum GB; Kwak J; Pandey S; Kim HB; Lee JH
    J Anim Sci Technol; 2023 May; 65(3):679-682. PubMed ID: 37332287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissolution of xylose metabolism in Lactococcus lactis.
    Erlandson KA; Park JH; Wissam ; El Khal ; Kao HH; Basaran P; Brydges S; Batt CA
    Appl Environ Microbiol; 2000 Sep; 66(9):3974-80. PubMed ID: 10966417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete genome sequences of
    Ryu S; Kim K; Cho DY; Kim Y; Oh S
    J Anim Sci Technol; 2022 May; 64(3):599-602. PubMed ID: 35709122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete genome sequence of Lactococcus lactis subsp. lactis KLDS4. 0325, a bacterium newly isolated from Koumiss in Xinjiang, China.
    Yang X; Wang Y; Zhou Y; Gao X; Li B; Huo G
    Wei Sheng Wu Xue Bao; 2014 Dec; 54(12):1406-18. PubMed ID: 25876326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome Profiling and In Silico Analysis of the Antimicrobial Peptides of the Grasshopper
    Kim IW; Markkandan K; Lee JH; Subramaniyam S; Yoo S; Park J; Hwang JS
    J Microbiol Biotechnol; 2016 Nov; 26(11):1863-1870. PubMed ID: 27586527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Sequence of Lactococcus lactis subsp. lactis NCDO 2118, a GABA-Producing Strain.
    Oliveira LC; Saraiva TD; Soares SC; Ramos RT; Sá PH; Carneiro AR; Miranda F; Freire M; Renan W; Júnior AF; Santos AR; Pinto AC; Souza BM; Castro CP; Diniz CA; Rocha CS; Mariano DC; de Aguiar EL; Folador EL; Barbosa EG; Aburjaile FF; Gonçalves LA; Guimarães LC; Azevedo M; Agresti PC; Silva RF; Tiwari S; Almeida SS; Hassan SS; Pereira VB; Abreu VA; Pereira UP; Dorella FA; Carvalho AF; Pereira FL; Leal CA; Figueiredo HC; Silva A; Miyoshi A; Azevedo V
    Genome Announc; 2014 Oct; 2(5):. PubMed ID: 25278529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved homo L-lactic acid fermentation from xylose by abolishment of the phosphoketolase pathway and enhancement of the pentose phosphate pathway in genetically modified xylose-assimilating Lactococcus lactis.
    Shinkawa S; Okano K; Yoshida S; Tanaka T; Ogino C; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1537-44. PubMed ID: 21637940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome.
    Bolotin A; Mauger S; Malarme K; Ehrlich SD; Sorokin A
    Antonie Van Leeuwenhoek; 1999; 76(1-4):27-76. PubMed ID: 10532372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363.
    Wegmann U; O'Connell-Motherway M; Zomer A; Buist G; Shearman C; Canchaya C; Ventura M; Goesmann A; Gasson MJ; Kuipers OP; van Sinderen D; Kok J
    J Bacteriol; 2007 Apr; 189(8):3256-70. PubMed ID: 17307855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Carbohydrate metabolism and lactic acid biosynthesis of Lactococcus lactis subsp. lactis KLDS4.0325].
    Yang X; Wang Y; Zhou Y; Gao X; Bailiang L; Huo G
    Wei Sheng Wu Xue Bao; 2014 Oct; 54(10):1146-54. PubMed ID: 25803891
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Pheng S; Han HL; Park DS; Chung CH; Kim SG
    Int J Syst Evol Microbiol; 2020 Jan; 70(1):505-510. PubMed ID: 31651376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete genome sequence of
    Kim H; Cho JH; Cho JH; Song M; Shin H; Kim S; Kim ES; Kim HB; Lee JH
    J Anim Sci Technol; 2021 Jan; 63(1):194-197. PubMed ID: 33987597
    [No Abstract]   [Full Text] [Related]  

  • 14. Lactococcus lactis metabolism and gene expression during growth on plant tissues.
    Golomb BL; Marco ML
    J Bacteriol; 2015 Jan; 197(2):371-81. PubMed ID: 25384484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactococcus taiwanensis sp. nov., a lactic acid bacterium isolated from fresh cummingcordia.
    Chen YS; Chang CH; Pan SF; Wang LT; Chang YC; Wu HC; Yanagida F
    Int J Syst Evol Microbiol; 2013 Jul; 63(Pt 7):2405-2409. PubMed ID: 23178728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization.
    Rygus T; Scheler A; Allmansberger R; Hillen W
    Arch Microbiol; 1991; 155(6):535-42. PubMed ID: 1719948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Open pangenome of
    Zhai Y; Wei C
    Front Microbiol; 2022; 13():948138. PubMed ID: 36081802
    [No Abstract]   [Full Text] [Related]  

  • 18. Genomic features of Lactococcus lactis IO-1, a lactic acid bacterium that utilizes xylose and produces high levels of L-lactic acid.
    Shimizu-Kadota M; Kato H; Shiwa Y; Oshima K; Machii M; Araya-Kojima T; Zendo T; Hattori M; Sonomoto K; Yoshikawa H
    Biosci Biotechnol Biochem; 2013; 77(9):1804-8. PubMed ID: 24018670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving xylose utilization of defatted rice bran for nisin production by overexpression of a xylose transcriptional regulator in Lactococcus lactis.
    Liu J; Ma Z; Zhu H; Caiyin Q; Liang D; Wu H; Huang X; Qiao J
    Bioresour Technol; 2017 Aug; 238():690-697. PubMed ID: 28499254
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Heo J; Cho H; Tamura T; Saitou S; Park K; Kim JS; Hong SB; Kwon SW; Kim SJ
    Int J Syst Evol Microbiol; 2019 Dec; 69(12):3682-3688. PubMed ID: 31644419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.