These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33987963)

  • 1. Drug Release Kinetics from Nondegradable Hydrophobic Polymers Can Be Modulated and Predicted by the Glass Transition Temperature.
    Qian J; Berkland C
    Adv Healthc Mater; 2021 Jun; 10(12):e2100015. PubMed ID: 33987963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative evaluation of plastic, hydrophobic and hydrophilic polymers as matrices for controlled-release drug delivery.
    Reza MS; Quadir MA; Haider SS
    J Pharm Pharm Sci; 2003; 6(2):282-91. PubMed ID: 12935440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sintering technique for the preparation of polymer matrices for the controlled release of macromolecules.
    Cohen J; Siegel RA; Langer R
    J Pharm Sci; 1984 Aug; 73(8):1034-7. PubMed ID: 6491905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of polymer properties on direct compression and drug release from water-insoluble controlled release matrix tablets.
    Grund J; Koerber M; Walther M; Bodmeier R
    Int J Pharm; 2014 Jul; 469(1):94-101. PubMed ID: 24746409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable polymers in controlled drug delivery.
    Heller J
    Crit Rev Ther Drug Carrier Syst; 1984; 1(1):39-90. PubMed ID: 6400195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymeric microneedles for controlled transdermal drug delivery.
    Singh P; Carrier A; Chen Y; Lin S; Wang J; Cui S; Zhang X
    J Control Release; 2019 Dec; 315():97-113. PubMed ID: 31644938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug Release from Porous Matrixes based on Natural Polymers.
    Kaczmarek B; Sionkowska A
    Curr Pharm Biotechnol; 2017; 18(9):721-729. PubMed ID: 29110601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained drug release from multi-layered sequentially crosslinked electrospun gelatin nanofiber mesh.
    Laha A; Sharma CS; Majumdar S
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():782-786. PubMed ID: 28482590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implant-associated local drug delivery systems based on biodegradable polymers: customized designs for different medical applications.
    Sternberg K; Petersen S; Grabow N; Senz V; Meyer zu Schwabedissen H; Kroemer HK; Schmitz KP
    Biomed Tech (Berl); 2013 Oct; 58(5):417-27. PubMed ID: 23979120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Injectable liquid polymers extend the delivery of corticosteroids for the treatment of osteoarthritis.
    Rivera-Delgado E; Djuhadi A; Danda C; Kenyon J; Maia J; Caplan AI; von Recum HA
    J Control Release; 2018 Aug; 284():112-121. PubMed ID: 29906555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-sensitive micelles self-assembled from polymer brush (PAE-
    Huang X; Liao W; Zhang G; Kang S; Zhang CY
    Int J Nanomedicine; 2017; 12():2215-2226. PubMed ID: 28356738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled drug release to the inner ear: Concepts, materials, mechanisms, and performance.
    Mäder K; Lehner E; Liebau A; Plontke SK
    Hear Res; 2018 Oct; 368():49-66. PubMed ID: 29576310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of hydrophilic and hydrophobic polymers on permeation of S-amlodipine besylate through intercalated polymeric transdermal matrix: 3(2) designing, optimization and characterization.
    Rastogi V; Yadav P; Husain A; Verma A
    Drug Dev Ind Pharm; 2019 Apr; 45(4):669-682. PubMed ID: 30633579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymeric nanoparticles - Influence of the glass transition temperature on drug release.
    Lappe S; Mulac D; Langer K
    Int J Pharm; 2017 Jan; 517(1-2):338-347. PubMed ID: 27986475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of polymer ratio and surfactants on controlled drug release from cellulosic microsponges.
    Shahzad Y; Saeed S; Ghori MU; Mahmood T; Yousaf AM; Jamshaid M; Sheikh R; Rizvi SAA
    Int J Biol Macromol; 2018 Apr; 109():963-970. PubMed ID: 29154881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro release of theophylline from poly(lactic acid) sustained-release pellets prepared by direct compression.
    Kader A; Jalil R
    Drug Dev Ind Pharm; 1998 Jun; 24(6):527-34. PubMed ID: 9876618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Release mechanisms and applications of drug delivery systems for extended-release.
    Wang S; Liu R; Fu Y; Kao WJ
    Expert Opin Drug Deliv; 2020 Sep; 17(9):1289-1304. PubMed ID: 32619149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymers for sustained macromolecule release: procedures to fabricate reproducible delivery systems and control release kinetics.
    Rhine WD; Hsieh DS; Langer R
    J Pharm Sci; 1980 May; 69(3):265-70. PubMed ID: 7189778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of molecular weight and polydispersity on kinetics of dissolution and release from ph/temperature-sensitive polymers.
    Ramkissoon-Ganorkar C; Liu F; Baudys M; Kim SW
    J Biomater Sci Polym Ed; 1999; 10(10):1149-61. PubMed ID: 10591137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-Demand Reversible UV-Triggered Interpenetrating Polymer Network-Based Drug Delivery System Using the Spiropyran-Merocyanine Hydrophobicity Switch.
    Ghani M; Heiskanen A; Kajtez J; Rezaei B; Larsen NB; Thomsen P; Kristensen A; Žukauskas A; Alm M; Emnéus J
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3591-3604. PubMed ID: 33438397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.