These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 33988039)
1. Combined Spectroscopic Analysis of Terrestrial Analogs from a Simulated Astronaut Mission Using the Laser-Induced Breakdown Spectroscopy (LIBS) Raman Sensor: Implications for Mars. Lalla EA; Konstantinidis M; Lymer E; Gilmour CM; Freemantle J; Such P; Cote K; Groemer G; Martinez-Frias J; Cloutis EA; Daly MG Appl Spectrosc; 2021 Sep; 75(9):1093-1113. PubMed ID: 33988039 [TBL] [Abstract][Full Text] [Related]
2. Laboratory Analysis of Returned Samples from the AMADEE-18 Mars Analog Mission. Lalla EA; Cote K; Hickson D; Garnitschnig S; Konstantinidis M; Such P; Czakler C; Schroder C; Frigeri A; Ercoli M; Losiak A; Gruber S; Groemer G Astrobiology; 2020 Nov; 20(11):1303-1320. PubMed ID: 33179966 [TBL] [Abstract][Full Text] [Related]
3. Raman Characterization of the CanMars Rover Field Campaign Samples Using the Raman Laser Spectrometer ExoMars Simulator: Implications for Mars and Planetary Exploration. Lalla EA; Konstantinidis M; Veneranda M; Daly MG; Manrique JA; Lymer EA; Freemantle J; Cloutis EA; Stromberg JM; Shkolyar S; Caudill C; Applin D; Vago JL; Rull F; Lopez-Reyes G Astrobiology; 2022 Apr; 22(4):416-438. PubMed ID: 35041521 [TBL] [Abstract][Full Text] [Related]
5. Spectroscopic study of terrestrial analogues to support rover missions to Mars - A Raman-centred review. Rull F; Veneranda M; Manrique-Martinez JA; Sanz-Arranz A; Saiz J; Medina J; Moral A; Perez C; Seoane L; Lalla E; Charro E; Lopez JM; Nieto LM; Lopez-Reyes G Anal Chim Acta; 2022 May; 1209():339003. PubMed ID: 35569840 [TBL] [Abstract][Full Text] [Related]
6. Spectroscopic characterization of samples from different environments in a Volcano-Glacial region in Iceland: Implications for in situ planetary exploration. Bower DM; Yang CSC; Hewagama T; Nixon CA; Aslam S; Whelley PL; Eigenbrode JL; Jin F; Ruliffson J; Kolasinski JR; Samuels AC Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 263():120205. PubMed ID: 34332244 [TBL] [Abstract][Full Text] [Related]
8. On the Habitability of Desert Varnish: A Combined Study by Micro-Raman Spectroscopy, X-ray Diffraction, and Methylated Pyrolysis-Gas Chromatography-Mass Spectrometry. Malherbe C; Hutchinson IB; Ingley R; Boom A; Carr AS; Edwards H; Vertruyen B; Gilbert B; Eppe G Astrobiology; 2017 Nov; 17(11):1123-1137. PubMed ID: 29039682 [TBL] [Abstract][Full Text] [Related]
9. Next generation laser-based standoff spectroscopy techniques for Mars exploration. Gasda PJ; Acosta-Maeda TE; Lucey PG; Misra AK; Sharma SK; Taylor GJ Appl Spectrosc; 2015; 69(2):173-92. PubMed ID: 25587811 [TBL] [Abstract][Full Text] [Related]
10. Quantification of calcium in infant formula using laser-induced breakdown spectroscopy (LIBS), Fourier transform mid-infrared (FT-IR) and Raman spectroscopy combined with chemometrics including data fusion. Zhao M; Markiewicz-Keszycka M; Beattie RJ; Casado-Gavalda MP; Cama-Moncunill X; O'Donnell CP; Cullen PJ; Sullivan C Food Chem; 2020 Aug; 320():126639. PubMed ID: 32213423 [TBL] [Abstract][Full Text] [Related]
11. The PANGAEA mineralogical database. Drozdovskiy I; Ligeza G; Jahoda P; Franke M; Lennert P; Vodnik P; Payler SJ; Kaliwoda M; Pozzobon R; Massironi M; Turchi L; Bessone L; Sauro F Data Brief; 2020 Aug; 31():105985. PubMed ID: 32715037 [TBL] [Abstract][Full Text] [Related]
12. A Mars Environment Chamber Coupled with Multiple In Situ Spectral Sensors for Mars Exploration. Wu Z; Ling Z; Zhang J; Fu X; Liu C; Xin Y; Li B; Qiao L Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916546 [TBL] [Abstract][Full Text] [Related]
13. Accuracy Enhancement of Raman Spectroscopy Using Complementary Laser-Induced Breakdown Spectroscopy (LIBS) with Geologically Mixed Samples. Choi S; Kim D; Yang J; Yoh JJ Appl Spectrosc; 2017 Apr; 71(4):678-685. PubMed ID: 28195495 [TBL] [Abstract][Full Text] [Related]
14. The ScanMars Subsurface Radar Sounding Experiment on AMADEE-18. Frigeri A; Ercoli M Astrobiology; 2020 Nov; 20(11):1338-1352. PubMed ID: 33179967 [TBL] [Abstract][Full Text] [Related]
15. Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars. Bazalgette Courrèges-Lacoste G; Ahlers B; Pérez FR Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1023-8. PubMed ID: 17466575 [TBL] [Abstract][Full Text] [Related]
17. Quantitative Potassium Measurements with Laser-Induced Breakdown Spectroscopy Using Low-Energy Lasers: Application to In Situ K-Ar Geochronology for Planetary Exploration. Cho Y; Horiuchi M; Shibasaki K; Kameda S; Sugita S Appl Spectrosc; 2017 Aug; 71(8):1969-1981. PubMed ID: 28447482 [TBL] [Abstract][Full Text] [Related]
18. Raman and UVN+LWIR LIBS detection system for in-situ surface chemical identification. Yang CSC; Bower DM; Jin F; Hewagama T; Aslam S; Nixon CA; Kolasinski J; Samuels AC MethodsX; 2022; 9():101647. PubMed ID: 35308253 [TBL] [Abstract][Full Text] [Related]
19. The ExoMars Raman spectrometer and the identification of biogeological spectroscopic signatures using a flight-like prototype. Edwards HG; Hutchinson I; Ingley R Anal Bioanal Chem; 2012 Oct; 404(6-7):1723-31. PubMed ID: 22865011 [TBL] [Abstract][Full Text] [Related]
20. Raman signal processing software for automated identification of mineral phases and biosignatures on Mars. Sobron P; Sobron F; Sanz A; Rull F Appl Spectrosc; 2008 Apr; 62(4):364-70. PubMed ID: 18416892 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]