BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 33988202)

  • 1. Glassy carbon microelectrode arrays enable voltage-peak separated simultaneous detection of dopamine and serotonin using fast scan cyclic voltammetry.
    Castagnola E; Thongpang S; Hirabayashi M; Nava G; Nimbalkar S; Nguyen T; Lara S; Oyawale A; Bunnell J; Moritz C; Kassegne S
    Analyst; 2021 Jun; 146(12):3955-3970. PubMed ID: 33988202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D fuzzy graphene microelectrode array for dopamine sensing at sub-cellular spatial resolution.
    Castagnola E; Garg R; Rastogi SK; Cohen-Karni T; Cui XT
    Biosens Bioelectron; 2021 Nov; 191():113440. PubMed ID: 34171734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Moving Fast-Scan Cyclic Voltammetry toward FDA Compliance with Capacitive Decoupling Patient Protection.
    Siegenthaler JR; Gushiken BC; Hill DF; Cowen SL; Heien ML
    ACS Sens; 2020 Jul; 5(7):1890-1899. PubMed ID: 32580544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless Instantaneous Neurotransmitter Concentration System: electrochemical monitoring of serotonin using fast-scan cyclic voltammetry--a proof-of-principle study.
    Griessenauer CJ; Chang SY; Tye SJ; Kimble CJ; Bennet KE; Garris PA; Lee KH
    J Neurosurg; 2010 Sep; 113(3):656-65. PubMed ID: 20415521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal differentiation of pH-dependent capacitive current from dopamine.
    Yoshimi K; Weitemier A
    Anal Chem; 2014 Sep; 86(17):8576-84. PubMed ID: 25105214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplexing neurochemical detection with carbon fiber multielectrode arrays using fast-scan cyclic voltammetry.
    Rafi H; Zestos AG
    Anal Bioanal Chem; 2021 Nov; 413(27):6715-6726. PubMed ID: 34259877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable in-vivo electrochemical sensing of tonic serotonin levels using PEDOT/CNT-coated glassy carbon flexible microelectrode arrays.
    Castagnola E; Robbins EM; Krahe DD; Wu B; Pwint MY; Cao Q; Cui XT
    Biosens Bioelectron; 2023 Jun; 230():115242. PubMed ID: 36989659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfabricated FSCV-compatible microelectrode array for real-time monitoring of heterogeneous dopamine release.
    Zachek MK; Park J; Takmakov P; Wightman RM; McCarty GS
    Analyst; 2010 Jul; 135(7):1556-63. PubMed ID: 20464031
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Castagnola E; Vahidi NW; Nimbalkar S; Rudraraju S; Thielk M; Zucchini E; Cea C; Carli S; Gentner TQ; Ricci D; Fadiga L; Kassegne S
    MRS Adv; 2018; 3(29):1629-1634. PubMed ID: 29881642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vitro Biofouling Performance of Boron-Doped Diamond Microelectrodes for Serotonin Detection Using Fast-Scan Cyclic Voltammetry.
    Gupta B; Perillo ML; Siegenthaler JR; Christensen IE; Welch MP; Rechenberg R; Banna GMHU; Galstyan D; Becker MF; Li W; Purcell EK
    Biosensors (Basel); 2023 May; 13(6):. PubMed ID: 37366941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties.
    Yang C; Trikantzopoulos E; Jacobs CB; Venton BJ
    Anal Chim Acta; 2017 May; 965():1-8. PubMed ID: 28366206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward robust quantification of dopamine and serotonin in mixtures using nano-graphitic carbon sensors.
    Jamalzadeh M; Cuniberto E; Huang Z; Feeley RM; Patel JC; Rice ME; Uichanco J; Shahrjerdi D
    Analyst; 2024 Apr; 149(8):2351-2362. PubMed ID: 38375597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Fouling of Ultrananocrystalline Diamond Microelectrodes during Dopamine Detection: Improving Lifetime via Electrochemical Cycling.
    Chang AY; Dutta G; Siddiqui S; Arumugam PU
    ACS Chem Neurosci; 2019 Jan; 10(1):313-322. PubMed ID: 30285418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous Dopamine and Serotonin Monitoring in Freely Moving Crayfish Using a Wireless Electrochemical Sensing System.
    Han J; Ho TW; Stine JM; Overton SN; Herberholz J; Ghodssi R
    ACS Sens; 2024 May; 9(5):2346-2355. PubMed ID: 38713172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo.
    Swamy BE; Venton BJ
    Analyst; 2007 Sep; 132(9):876-84. PubMed ID: 17710262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Dopamine Sensitivity Using Steered Fast-Scan Cyclic Voltammetry.
    Kang Y; Goyal A; Hwang S; Park C; Cho HU; Shin H; Park J; Bennet KE; Lee KH; Oh Y; Jang DP
    ACS Omega; 2021 Dec; 6(49):33599-33606. PubMed ID: 34926907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Nanotube Yarn Microelectrodes Promote High Temporal Measurements of Serotonin Using Fast Scan Cyclic Voltammetry.
    Mendoza A; Asrat T; Liu F; Wonnenberg P; Zestos AG
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implantable flexible multielectrode arrays for multi-site sensing of serotonin tonic levels.
    Castagnola E; Robbins EM; Krahe D; Wu B; Pwint MY; Cao Q; Cui XT
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of the Wireless Instantaneous Neurotransmitter Concentration System for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry.
    Bledsoe JM; Kimble CJ; Covey DP; Blaha CD; Agnesi F; Mohseni P; Whitlock S; Johnson DM; Horne A; Bennet KE; Lee KH; Garris PA
    J Neurosurg; 2009 Oct; 111(4):712-23. PubMed ID: 19425890
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.