These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 33988294)
1. Dimeric Acylphloroglucinol Derivatives with New Skeletons from Leptospermum scoparium. Xia K; Gu JH; Fu XX; Li NP; Chen M; Huang Q; Wang WJ; Ye WC; Wang L Chem Biodivers; 2021 Jun; 18(6):e2100252. PubMed ID: 33988294 [TBL] [Abstract][Full Text] [Related]
2. Five New Phenylpropanoyl Phloroglucinol Derivatives from Leptospermum scoparium. Gu JH; Liu JS; Lin JH; Liu F; Wu ZL; Zheng YR; Ye WC; Wang L Chem Biodivers; 2023 Feb; 20(2):e202201111. PubMed ID: 36546830 [TBL] [Abstract][Full Text] [Related]
3. Five new phloroglucinol derivatives from Xu W; Xu SH; Wang L; Zang Z; Zhao Y; Liu JP; Yang J; Zhao Y Nat Prod Res; 2022 Apr; 36(7):1679-1685. PubMed ID: 32815422 [TBL] [Abstract][Full Text] [Related]
4. Phloroglucinols with hAChE and α-glucosidase inhibitory activities from the leaves of tropic Rhodomyrtus tomentosa. Yu MY; Liu SN; Luo EE; Jin Q; Liu H; Liu HY; Luo XD; Qin XJ Phytochemistry; 2022 Nov; 203():113394. PubMed ID: 36007662 [TBL] [Abstract][Full Text] [Related]
5. Phloroglucinol derivatives with Zhang DL; Hu YK; Wang L; He YB; Yang J; Zhao Y J Asian Nat Prod Res; 2023 Dec; 25(12):1168-1174. PubMed ID: 37200198 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and molecular docking studies of potent α-glucosidase inhibitors based on biscoumarin skeleton. Khan KM; Rahim F; Wadood A; Kosar N; Taha M; Lalani S; Khan A; Fakhri MI; Junaid M; Rehman W; Khan M; Perveen S; Sajid M; Choudhary MI Eur J Med Chem; 2014 Jun; 81():245-52. PubMed ID: 24844449 [TBL] [Abstract][Full Text] [Related]
7. Leptosperols A and B, Two Cinnamoylphloroglucinol-Sesquiterpenoid Hybrids from Gu JH; Wang WJ; Chen JZ; Liu JS; Li NP; Cheng MJ; Hu LJ; Li CC; Ye WC; Wang L Org Lett; 2020 Mar; 22(5):1796-1800. PubMed ID: 32091219 [TBL] [Abstract][Full Text] [Related]
8. Meroterpene-like compounds derived from β-caryophyllene as potent α-glucosidase inhibitors. Ma SJ; Yu J; Yan DW; Wang DC; Gao JM; Zhang Q Org Biomol Chem; 2018 Dec; 16(48):9454-9460. PubMed ID: 30516781 [TBL] [Abstract][Full Text] [Related]
9. Isoxerophilusins A and B, Two Novel Polycyclic Asymmetric Diterpene Dimers from Dai JM; Yan BC; Hu K; Li XR; Li XN; Sun HD; Puno PT Org Lett; 2024 Jul; 26(29):6203-6208. PubMed ID: 39004824 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and biological evaluation of chepraecoxin A derivatives as α-glucosidase inhibitors. Yang XT; Geng CA; Li TZ; Deng ZT; Chen JJ Bioorg Med Chem Lett; 2020 Apr; 30(8):127020. PubMed ID: 32067867 [TBL] [Abstract][Full Text] [Related]
11. α-Glucosidase Inhibitors from the Fungus Aspergillus terreus 3.05358. Shan WG; Wu ZY; Pang WW; Ma LF; Ying YM; Zhan ZJ Chem Biodivers; 2015 Nov; 12(11):1718-24. PubMed ID: 26567949 [TBL] [Abstract][Full Text] [Related]
12. A concise synthesis and evaluation of new malonamide derivatives as potential α-glucosidase inhibitors. Islam MS; Barakat A; Al-Majid AM; Ghabbour HA; Rahman AF; Javaid K; Imad R; Yousuf S; Choudhary MI Bioorg Med Chem; 2016 Apr; 24(8):1675-82. PubMed ID: 26972921 [TBL] [Abstract][Full Text] [Related]
13. Dauresorcinols A and B, two pairs of merosesquiterpenoid enantiomers with new carbon skeletons from Rhododendron dauricum. Zhang H; Gao B; Zheng G; Feng Y; Liu Z; Yao G Bioorg Chem; 2024 Jul; 148():107428. PubMed ID: 38733749 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, biological evaluation, and docking studies of novel 5,6-diaryl-1,2,4-triazine thiazole derivatives as a new class of α-glucosidase inhibitors. Wang G; Peng Z; Gong Z; Li Y Bioorg Chem; 2018 Aug; 78():195-200. PubMed ID: 29587132 [TBL] [Abstract][Full Text] [Related]
15. In vitro and in silico evaluations of diarylpentanoid series as α-glucosidase inhibitor. Leong SW; Abas F; Lam KW; Yusoff K Bioorg Med Chem Lett; 2018 Feb; 28(3):302-309. PubMed ID: 29292226 [TBL] [Abstract][Full Text] [Related]
16. Synthesis, Biological Evaluation and Molecular Docking Study of 2-Substituted-4,6-Diarylpyrimidines as α-Glucosidase Inhibitors. Gong Z; Xie Z; Qiu J; Wang G Molecules; 2017 Oct; 22(11):. PubMed ID: 29084182 [TBL] [Abstract][Full Text] [Related]
17. Design, synthesis and docking study of novel tetracyclic oxindole derivatives as α-glucosidase inhibitors. Han K; Li Y; Zhang Y; Teng Y; Ma Y; Wang M; Wang R; Xu W; Yao Q; Zhang Y; Qin H; Sun H; Yu P Bioorg Med Chem Lett; 2015 Apr; 25(7):1471-5. PubMed ID: 25759031 [TBL] [Abstract][Full Text] [Related]
18. Chemical constituents from Taraxacum officinale and their α-glucosidase inhibitory activities. Choi J; Yoon KD; Kim J Bioorg Med Chem Lett; 2018 Feb; 28(3):476-481. PubMed ID: 29254644 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of novel inhibitors of α-glucosidase based on the benzothiazole skeleton containing benzohydrazide moiety and their molecular docking studies. Taha M; Ismail NH; Lalani S; Fatmi MQ; Atia-Tul-Wahab ; Siddiqui S; Khan KM; Imran S; Choudhary MI Eur J Med Chem; 2015 Mar; 92():387-400. PubMed ID: 25585009 [TBL] [Abstract][Full Text] [Related]
20. α-Glucosidase inhibitory and nitric oxide production inhibitory activities of alkaloids isolated from a twig extract of Polyalthia cinnamomea. Suthiphasilp V; Maneerat W; Rujanapun N; Duangyod T; Charoensup R; Deachathai S; Andersen RJ; Patrick BO; Pyne SG; Laphookhieo S Bioorg Med Chem; 2020 May; 28(10):115462. PubMed ID: 32247751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]