These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33988410)

  • 1. Prospects for Measuring the Hubble Constant with Neutron-Star-Black-Hole Mergers.
    Feeney SM; Peiris HV; Nissanke SM; Mortlock DJ
    Phys Rev Lett; 2021 Apr; 126(17):171102. PubMed ID: 33988410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring the Hubble Constant with Neutron Star Black Hole Mergers.
    Vitale S; Chen HY
    Phys Rev Lett; 2018 Jul; 121(2):021303. PubMed ID: 30085719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Black-Hole Remnants from Black-Hole-Neutron-Star Mergers.
    Zappa F; Bernuzzi S; Pannarale F; Mapelli M; Giacobbo N
    Phys Rev Lett; 2019 Jul; 123(4):041102. PubMed ID: 31491270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimessenger constraints on the neutron-star equation of state and the Hubble constant.
    Dietrich T; Coughlin MW; Pang PTH; Bulla M; Heinzel J; Issa L; Tews I; Antier S
    Science; 2020 Dec; 370(6523):1450-1453. PubMed ID: 33335061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers.
    Zappa F; Bernuzzi S; Radice D; Perego A; Dietrich T
    Phys Rev Lett; 2018 Mar; 120(11):111101. PubMed ID: 29601774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prospects for gravitational-wave observations of neutron-star tidal disruption in neutron-star-black-hole binaries.
    Vallisneri M
    Phys Rev Lett; 2000 Apr; 84(16):3519-22. PubMed ID: 11019135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Black hole-neutron star coalescence: Effects of the neutron star spin on jet launching and dynamical ejecta mass.
    Ruiz M; Paschalidis V; Tsokaros A; Shapiro SL
    Phys Rev D; 2020 Dec; 102(12):. PubMed ID: 34595362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic Uncertainty of Standard Sirens from the Viewing Angle of Binary Neutron Star Inspirals.
    Chen HY
    Phys Rev Lett; 2020 Nov; 125(20):201301. PubMed ID: 33258636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An updated nuclear-physics and multi-messenger astrophysics framework for binary neutron star mergers.
    Pang PTH; Dietrich T; Coughlin MW; Bulla M; Tews I; Almualla M; Barna T; Kiendrebeogo RW; Kunert N; Mansingh G; Reed B; Sravan N; Toivonen A; Antier S; VandenBerg RO; Heinzel J; Nedora V; Salehi P; Sharma R; Somasundaram R; Van Den Broeck C
    Nat Commun; 2023 Dec; 14(1):8352. PubMed ID: 38123551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A gravitational-wave standard siren measurement of the Hubble constant.
    ; ; ; ; ; ;
    Nature; 2017 Nov; 551(7678):85-88. PubMed ID: 29094696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-latency gravitational wave alert products and their performance at the time of the fourth LIGO-Virgo-KAGRA observing run.
    Chaudhary SS; Toivonen A; Waratkar G; Mo G; Chatterjee D; Antier S; Brockill P; Coughlin MW; Essick R; Ghosh S; Morisaki S; Baral P; Baylor A; Adhikari N; Brady P; Cabourn Davies G; Dal Canton T; Cavaglia M; Creighton J; Choudhary S; Chu YK; Clearwater P; Davis L; Dent T; Drago M; Ewing B; Godwin P; Guo W; Hanna C; Huxford R; Harry I; Katsavounidis E; Kovalam M; Li AKY; Magee R; Marx E; Meacher D; Messick C; Morice-Atkinson X; Pace A; De Pietri R; Piotrzkowski B; Roy S; Sachdev S; Singer LP; Singh D; Szczepanczyk M; Tang D; Trevor M; Tsukada L; Villa-Ortega V; Wen L; Wysocki D
    Proc Natl Acad Sci U S A; 2024 Apr; 121(18):e2316474121. PubMed ID: 38652749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two per cent Hubble constant measurement from standard sirens within five years.
    Chen HY; Fishbach M; Holz DE
    Nature; 2018 Oct; 562(7728):545-547. PubMed ID: 30333628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of hyperons in binary neutron star mergers.
    Sekiguchi Y; Kiuchi K; Kyutoku K; Shibata M
    Phys Rev Lett; 2011 Nov; 107(21):211101. PubMed ID: 22181867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying a First-Order Phase Transition in Neutron-Star Mergers through Gravitational Waves.
    Bauswein A; Bastian NF; Blaschke DB; Chatziioannou K; Clark JA; Fischer T; Oertel M
    Phys Rev Lett; 2019 Feb; 122(6):061102. PubMed ID: 30822078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical relativity of compact binaries in the 21st century.
    Duez MD; Zlochower Y
    Rep Prog Phys; 2019 Jan; 82(1):016902. PubMed ID: 30117809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromagnetic Chirps from Neutron Star-Black Hole Mergers.
    Schnittman JD; Dal Canton T; Camp J; Tsang D; Kelly BJ
    Astrophys J; 2018; 853(2):. PubMed ID: 31708583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A kilonova as the electromagnetic counterpart to a gravitational-wave source.
    Smartt SJ; Chen TW; Jerkstrand A; Coughlin M; Kankare E; Sim SA; Fraser M; Inserra C; Maguire K; Chambers KC; Huber ME; Krühler T; Leloudas G; Magee M; Shingles LJ; Smith KW; Young DR; Tonry J; Kotak R; Gal-Yam A; Lyman JD; Homan DS; Agliozzo C; Anderson JP; Angus CR; Ashall C; Barbarino C; Bauer FE; Berton M; Botticella MT; Bulla M; Bulger J; Cannizzaro G; Cano Z; Cartier R; Cikota A; Clark P; De Cia A; Della Valle M; Denneau L; Dennefeld M; Dessart L; Dimitriadis G; Elias-Rosa N; Firth RE; Flewelling H; Flörs A; Franckowiak A; Frohmaier C; Galbany L; González-Gaitán S; Greiner J; Gromadzki M; Guelbenzu AN; Gutiérrez CP; Hamanowicz A; Hanlon L; Harmanen J; Heintz KE; Heinze A; Hernandez MS; Hodgkin ST; Hook IM; Izzo L; James PA; Jonker PG; Kerzendorf WE; Klose S; Kostrzewa-Rutkowska Z; Kowalski M; Kromer M; Kuncarayakti H; Lawrence A; Lowe TB; Magnier EA; Manulis I; Martin-Carrillo A; Mattila S; McBrien O; Müller A; Nordin J; O'Neill D; Onori F; Palmerio JT; Pastorello A; Patat F; Pignata G; Podsiadlowski P; Pumo ML; Prentice SJ; Rau A; Razza A; Rest A; Reynolds T; Roy R; Ruiter AJ; Rybicki KA; Salmon L; Schady P; Schultz ASB; Schweyer T; Seitenzahl IR; Smith M; Sollerman J; Stalder B; Stubbs CW; Sullivan M; Szegedi H; Taddia F; Taubenberger S; Terreran G; van Soelen B; Vos J; Wainscoat RJ; Walton NA; Waters C; Weiland H; Willman M; Wiseman P; Wright DE; Wyrzykowski Ł; Yaron O
    Nature; 2017 Nov; 551(7678):75-79. PubMed ID: 29094693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromagnetic counterparts to massive black-hole mergers.
    Bogdanović T; Miller MC; Blecha L
    Living Rev Relativ; 2022; 25(1):3. PubMed ID: 35767150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring neutron-star properties via gravitational waves from neutron-star mergers.
    Bauswein A; Janka HT
    Phys Rev Lett; 2012 Jan; 108(1):011101. PubMed ID: 22304250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gravitational-wave localization alone can probe origin of stellar-mass black hole mergers.
    Bartos I; Haiman Z; Marka Z; Metzger BD; Stone NC; Marka S
    Nat Commun; 2017 Oct; 8(1):831. PubMed ID: 29018247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.