These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 33988788)

  • 1. Quantitative evaluation of COVID-19 pneumonia severity by CT pneumonia analysis algorithm using deep learning technology and blood test results.
    Okuma T; Hamamoto S; Maebayashi T; Taniguchi A; Hirakawa K; Matsushita S; Matsushita K; Murata K; Manabe T; Miki Y
    Jpn J Radiol; 2021 Oct; 39(10):956-965. PubMed ID: 33988788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AI-Based Quantitative CT Analysis of Temporal Changes According to Disease Severity in COVID-19 Pneumonia.
    Ardali Duzgun S; Durhan G; Basaran Demirkazik F; Irmak I; Karakaya J; Akpinar E; Gulsun Akpinar M; Inkaya AC; Ocal S; Topeli A; Ariyurek OM
    J Comput Assist Tomogr; 2021 Nov-Dec 01; 45(6):970-978. PubMed ID: 34581706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prognostic Implications of CT Feature Analysis in Patients with COVID-19: a Nationwide Cohort Study.
    Jeong YJ; Nam BD; Yoo JY; Kim KI; Kang H; Hwang JH; Kim YH; Lee KS
    J Korean Med Sci; 2021 Mar; 36(8):e51. PubMed ID: 33650333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From community-acquired pneumonia to COVID-19: a deep learning-based method for quantitative analysis of COVID-19 on thick-section CT scans.
    Li Z; Zhong Z; Li Y; Zhang T; Gao L; Jin D; Sun Y; Ye X; Yu L; Hu Z; Xiao J; Huang L; Tang Y
    Eur Radiol; 2020 Dec; 30(12):6828-6837. PubMed ID: 32683550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of clinical features and imaging signs of COVID-19 with the assistance of artificial intelligence.
    Ren HW; Wu Y; Dong JH; An WM; Yan T; Liu Y; Liu CC
    Eur Rev Med Pharmacol Sci; 2020 Aug; 24(15):8210-8218. PubMed ID: 32767351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of deep learning, radiomics and subjective assessment of chest CT findings in SARS-CoV-2 pneumonia.
    Arru C; Ebrahimian S; Falaschi Z; Hansen JV; Pasche A; Lyhne MD; Zimmermann M; Durlak F; Mitschke M; Carriero A; Nielsen-Kudsk JE; Kalra MK; Saba L
    Clin Imaging; 2021 Dec; 80():58-66. PubMed ID: 34246044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycemic status affects the severity of coronavirus disease 2019 in patients with diabetes mellitus: an observational study of CT radiological manifestations using an artificial intelligence algorithm.
    Lu X; Cui Z; Pan F; Li L; Li L; Liang B; Yang L; Zheng C
    Acta Diabetol; 2021 May; 58(5):575-586. PubMed ID: 33420614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative CT for detecting COVID‑19 pneumonia in suspected cases.
    Lu W; Wei J; Xu T; Ding M; Li X; He M; Chen K; Yang X; She H; Huang B
    BMC Infect Dis; 2021 Aug; 21(1):836. PubMed ID: 34412614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial intelligence-based analysis of the spatial distribution of abnormal computed tomography patterns in SARS-CoV-2 pneumonia: association with disease severity.
    Kataoka Y; Tanabe N; Shirata M; Hamao N; Oi I; Maetani T; Shiraishi Y; Hashimoto K; Yamazoe M; Shima H; Ajimizu H; Oguma T; Emura M; Endo K; Hasegawa Y; Mio T; Shiota T; Yasui H; Nakaji H; Tsuchiya M; Tomii K; Hirai T; Ito I
    Respir Res; 2024 Jan; 25(1):24. PubMed ID: 38200566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CT Quantitative Analysis and Its Relationship with Clinical Features for Assessing the Severity of Patients with COVID-19.
    Sun D; Li X; Guo D; Wu L; Chen T; Fang Z; Chen L; Zeng W; Yang R
    Korean J Radiol; 2020 Jul; 21(7):859-868. PubMed ID: 32524786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial intelligence-assisted quantification of COVID-19 pneumonia burden from computed tomography improves prediction of adverse outcomes over visual scoring systems.
    Grodecki K; Killekar A; Simon J; Lin A; Cadet S; McElhinney P; Chan C; Williams MC; Pressman BD; Julien P; Li D; Chen P; Gaibazzi N; Thakur U; Mancini E; Agalbato C; Munechika J; Matsumoto H; Menè R; Parati G; Cernigliaro F; Nerlekar N; Torlasco C; Pontone G; Maurovich-Horvat P; Slomka PJ; Dey D
    Br J Radiol; 2023 Sep; 96(1149):20220180. PubMed ID: 37310152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated detection and quantification of COVID-19 pneumonia: CT imaging analysis by a deep learning-based software.
    Zhang HT; Zhang JS; Zhang HH; Nan YD; Zhao Y; Fu EQ; Xie YH; Liu W; Li WP; Zhang HJ; Jiang H; Li CM; Li YY; Ma RN; Dang SK; Gao BB; Zhang XJ; Zhang T
    Eur J Nucl Med Mol Imaging; 2020 Oct; 47(11):2525-2532. PubMed ID: 32666395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial intelligence-based CT metrics used in predicting clinical outcome of COVID-19 in young and middle-aged adults.
    Xudong Y; Weihong L; Feng X; Yanli L; Weishun L; Fengjun Z; Jiao G; Jiawei L; Xiaolu H; Huailiang H; Jianye L; Sihui Z; Chuanmiao X; Hanhui L; Liang M
    Med Phys; 2022 Aug; 49(8):5604-5615. PubMed ID: 35689830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Assessment of Chest CT Patterns in COVID-19 and Bacterial Pneumonia Patients: a Deep Learning Perspective.
    Kang M; Hong KS; Chikontwe P; Luna M; Jang JG; Park J; Shin KC; Park SH; Ahn JH
    J Korean Med Sci; 2021 Feb; 36(5):e46. PubMed ID: 33527788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Six artificial intelligence paradigms for tissue characterisation and classification of non-COVID-19 pneumonia against COVID-19 pneumonia in computed tomography lungs.
    Saba L; Agarwal M; Patrick A; Puvvula A; Gupta SK; Carriero A; Laird JR; Kitas GD; Johri AM; Balestrieri A; Falaschi Z; Paschè A; Viswanathan V; El-Baz A; Alam I; Jain A; Naidu S; Oberleitner R; Khanna NN; Bit A; Fatemi M; Alizad A; Suri JS
    Int J Comput Assist Radiol Surg; 2021 Mar; 16(3):423-434. PubMed ID: 33532975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Performance of Chest CT in Evaluating the Clinical Severity of COVID-19 Pneumonia: Identifying Critical Cases Based on CT Characteristics.
    Lyu P; Liu X; Zhang R; Shi L; Gao J
    Invest Radiol; 2020 Jul; 55(7):412-421. PubMed ID: 32304402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using artificial intelligence to assist radiologists in distinguishing COVID-19 from other pulmonary infections.
    Yang Y; Lure FYM; Miao H; Zhang Z; Jaeger S; Liu J; Guo L
    J Xray Sci Technol; 2021; 29(1):1-17. PubMed ID: 33164982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated diagnosis and prognosis of COVID-19 pneumonia from initial ER chest X-rays using deep learning.
    Chamberlin JH; Aquino G; Nance S; Wortham A; Leaphart N; Paladugu N; Brady S; Baird H; Fiegel M; Fitzpatrick L; Kocher M; Ghesu F; Mansoor A; Hoelzer P; Zimmermann M; James WE; Dennis DJ; Houston BA; Kabakus IM; Baruah D; Schoepf UJ; Burt JR
    BMC Infect Dis; 2022 Jul; 22(1):637. PubMed ID: 35864468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical utilization of artificial intelligence-based COVID-19 pneumonia quantification using chest computed tomography - a multicenter retrospective cohort study in Japan.
    Tanaka H; Maetani T; Chubachi S; Tanabe N; Shiraishi Y; Asakura T; Namkoong H; Shimada T; Azekawa S; Otake S; Nakagawara K; Fukushima T; Watase M; Terai H; Sasaki M; Ueda S; Kato Y; Harada N; Suzuki S; Yoshida S; Tateno H; Yamada Y; Jinzaki M; Hirai T; Okada Y; Koike R; Ishii M; Hasegawa N; Kimura A; Imoto S; Miyano S; Ogawa S; Kanai T; Fukunaga K
    Respir Res; 2023 Oct; 24(1):241. PubMed ID: 37798709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep-learning algorithms for the interpretation of chest radiographs to aid in the triage of COVID-19 patients: A multicenter retrospective study.
    Jang SB; Lee SH; Lee DE; Park SY; Kim JK; Cho JW; Cho J; Kim KB; Park B; Park J; Lim JK
    PLoS One; 2020; 15(11):e0242759. PubMed ID: 33232368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.