These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 33988817)
1. Capsule Network-based architectures for the segmentation of sub-retinal serous fluid in optical coherence tomography images of central serous chorioretinopathy. Pawan SJ; Sankar R; Jain A; Jain M; Darshan DV; Anoop BN; Kothari AR; Venkatesan M; Rajan J Med Biol Eng Comput; 2021 Jun; 59(6):1245-1259. PubMed ID: 33988817 [TBL] [Abstract][Full Text] [Related]
2. Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images. Gao K; Niu S; Ji Z; Wu M; Chen Q; Xu R; Yuan S; Fan W; Chen Y; Dong J Comput Methods Programs Biomed; 2019 Jul; 176():69-80. PubMed ID: 31200913 [TBL] [Abstract][Full Text] [Related]
3. Does Subretinal Fluid Optical Density Ratio Differ Among the Eyes with Acute Central Serous Chorioretinopathy,Vogt Koyanagi Harada Disease and Choroidal Hemangioma: A Cross-sectional Study. Durmaz Engin C; Kayabasi M; Koksaldi S; Ipek SC; Saatci AO Photodiagnosis Photodyn Ther; 2023 Jun; 42():103634. PubMed ID: 37244453 [TBL] [Abstract][Full Text] [Related]
4. Retro-mode Imaging for retinal pigment epithelium alterations in central serous chorioretinopathy. Shin YU; Lee BR Am J Ophthalmol; 2012 Jul; 154(1):155-163.e4. PubMed ID: 22503695 [TBL] [Abstract][Full Text] [Related]
6. Deep Learning Based Sub-Retinal Fluid Segmentation in Central Serous Chorioretinopathy Optical Coherence Tomography Scans. Narendra Rao TJ; Girish GN; Kothari AR; Rajan J Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():978-981. PubMed ID: 31946057 [TBL] [Abstract][Full Text] [Related]
7. Early alterations in retinal microvasculature on swept-source optical coherence tomography angiography in acute central serous chorioretinopathy. Podkowinski D; Foessl B; de Sisternes L; Beka S; Mursch-Edlmayr AS; Strauss RW; Bolz M Sci Rep; 2021 Feb; 11(1):3129. PubMed ID: 33542349 [TBL] [Abstract][Full Text] [Related]
8. Automatic Subretinal Fluid Segmentation of Retinal SD-OCT Images With Neurosensory Retinal Detachment Guided by Enface Fundus Imaging. Wu M; Chen Q; He X; Li P; Fan W; Yuan S; Park H IEEE Trans Biomed Eng; 2018 Jan; 65(1):87-95. PubMed ID: 28436839 [TBL] [Abstract][Full Text] [Related]
9. Central Serous Chorioretinopathy: Morphological and Functional Outcome after Subthreshold Thermal Laser Coagulation with a Frequency-Doubled Nd:YAG Continuous-Wave Laser. Enders C; Lang GE; Mayer B; Werner JU Ophthalmologica; 2022; 245(1):59-68. PubMed ID: 34517369 [TBL] [Abstract][Full Text] [Related]
10. Characteristics of acute central serous chorioretinopathy on optical coherence tomography - a retrospective study. Aqil A; Mehmood A; Moin M; Abid K J Pak Med Assoc; 2020 Oct; 70(10):1834-1837. PubMed ID: 33159763 [TBL] [Abstract][Full Text] [Related]
11. [OCT-morphometric and angiographic parallels between different variants of central serous chorioretinopathy]. Panova IE; Shaimov TB; Shaimova VA Vestn Oftalmol; 2017; 133(2):10-17. PubMed ID: 28524134 [TBL] [Abstract][Full Text] [Related]
12. Sensitivity and specificity of multispectral imaging in detecting central serous chorioretinopathy. Zhu X; Cheng Y; Pan X; Jin E; Li S; Zhao M; Li X Lasers Surg Med; 2017 Jul; 49(5):498-505. PubMed ID: 28000244 [TBL] [Abstract][Full Text] [Related]
13. Importance of OCT-derived biomarkers for the recurrence of central serous chorioretinopathy using statistics and predictive modelling. Seiler E; Delachaux L; Cattaneo J; Garjani A; Martin T; Duriez A; Baffou J; Mousavi S; Meloni I; Bergin C; Tomasoni M; Eandi CM Sci Rep; 2024 Oct; 14(1):23940. PubMed ID: 39397115 [TBL] [Abstract][Full Text] [Related]
14. Morphologic changes in acute central serous chorioretinopathy evaluated by fourier-domain optical coherence tomography. Fujimoto H; Gomi F; Wakabayashi T; Sawa M; Tsujikawa M; Tano Y Ophthalmology; 2008 Sep; 115(9):1494-500, 1500.e1-2. PubMed ID: 18394706 [TBL] [Abstract][Full Text] [Related]
15. Macular microvascular changes in resolved central serous chorioretinopaty using spectral-domain optical coherence tomography angiography. Bahadir Akkoc S; Kazim Erol M; Suren E J Fr Ophtalmol; 2021 May; 44(5):693-702. PubMed ID: 33896657 [TBL] [Abstract][Full Text] [Related]
16. Bullous central serous chorioretinopathy and retinal pigment epithelium sequelae postblunt trauma. Gunna NT; C Parameswarappa D; Rani PK BMJ Case Rep; 2020 Sep; 13(9):. PubMed ID: 32967945 [TBL] [Abstract][Full Text] [Related]
17. Macular ganglion cell complex thickness in acute and chronic central serous chorioretinopathy. Demirok G; Kocamaz F; Topalak Y; Altay Y; Sengun A Int Ophthalmol; 2017 Apr; 37(2):409-416. PubMed ID: 27324370 [TBL] [Abstract][Full Text] [Related]
18. Dark and white lesions observed in central serous chorioretinopathy on optical coherence tomography angiography. De Bats F; Cornut PL; Wolff B; Kodjikian L; Mauget-Faÿsse M Eur J Ophthalmol; 2018 Jul; 28(4):446-453. PubMed ID: 29554817 [TBL] [Abstract][Full Text] [Related]
19. Association of Choroidal Neovascularization and Central Serous Chorioretinopathy With Optical Coherence Tomography Angiography. Bonini Filho MA; de Carlo TE; Ferrara D; Adhi M; Baumal CR; Witkin AJ; Reichel E; Duker JS; Waheed NK JAMA Ophthalmol; 2015 Aug; 133(8):899-906. PubMed ID: 25996386 [TBL] [Abstract][Full Text] [Related]
20. Application of the Balloon Snake in the Volume Measurement of Subretinal Fluid in Central Serous Chorioretinopathy. Chien HJ; Chang CJ Semin Ophthalmol; 2019; 34(6):403-408. PubMed ID: 31288617 [No Abstract] [Full Text] [Related] [Next] [New Search]