These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33988921)

  • 1. The Electrophilicities of XCF
    Alkorta I; Legon AC
    Chempluschem; 2021 Apr; 86(5):778-784. PubMed ID: 33988921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A reduced electrophilicity for simple Lewis acids A involved in non-covalent interactions with Lewis bases B.
    Alkorta I; Legon A
    Phys Chem Chem Phys; 2022 Mar; 24(11):6856-6865. PubMed ID: 35253037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleophilicities of Lewis Bases B and Electrophilicities of Lewis Acids A Determined from the Dissociation Energies of Complexes B⋯A Involving Hydrogen Bonds, Tetrel Bonds, Pnictogen Bonds, Chalcogen Bonds and Halogen Bonds.
    Alkorta I; Legon AC
    Molecules; 2017 Oct; 22(10):. PubMed ID: 29065546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced Nucleophilicities И
    Alkorta I; Legon A
    Chempluschem; 2023 Feb; 88(2):e202300032. PubMed ID: 36744633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced nucleophilicity: an intrinsic property of the Lewis base atom interacting with H in hydrogen-bonds with Lewis acids HX (X = F, Cl, Br, I, CN, CCH, CP).
    Alkorta I; Legon A
    Phys Chem Chem Phys; 2022 Nov; 24(42):25822-25833. PubMed ID: 36281700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen-Bond Dissociation Energies from the Properties of Isolated Monomers.
    Alkorta I; Legon A
    J Phys Chem A; 2023 Jun; 127(21):4715-4723. PubMed ID: 37203459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Assessment of Radial Potential Functions for the Halogen Bond: Pseudo-Diatomic Models for Axially Symmetric Complexes B⋅⋅⋅ClF (B=N
    Legon AC
    Chempluschem; 2021 May; 86(5):731-740. PubMed ID: 33942569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Ab Initio Investigation of the Geometries and Binding Strengths of Tetrel-, Pnictogen-, and Chalcogen-Bonded Complexes of CO₂, N₂O, and CS₂ with Simple Lewis Bases: Some Generalizations.
    Alkorta I; Legon AC
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30181450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ab initio investigation of alkali-metal non-covalent bonds BLiR and BNaR (R = F, H or CH
    Alkorta I; Hill JG; Legon AC
    Phys Chem Chem Phys; 2020 Jul; 22(28):16421-16430. PubMed ID: 32658222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Halogen bonding in the gas phase: a comparison of the iodine bond in B⋯ICl and B⋯ICF3 for simple Lewis Bases B.
    Hill JG; Legon AC; Tew DP; Walker NR
    Top Curr Chem; 2015; 358():43-77. PubMed ID: 25467533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reduced radial potential energy function for the halogen bond and the hydrogen bond in complexes B···XY and B···HX, where X and Y are halogen atoms.
    Legon AC
    Phys Chem Chem Phys; 2014 Jun; 16(24):12415-21. PubMed ID: 24827860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A test of ab initio-generated, radial intermolecular potential energy functions for five axially-symmetric, hydrogen-bonded complexes BHF, where B = N
    Legon AC
    Phys Chem Chem Phys; 2021 Mar; 23(12):7271-7279. PubMed ID: 33876087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermolecular interactions of trifluorohalomethanes with Lewis bases in the gas phase: an ab initio study.
    Wang YS; Yin CC; Chao SD
    J Chem Phys; 2014 Oct; 141(13):134308. PubMed ID: 25296807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two faces of triel bonds in boron trihalide complexes.
    Grabowski SJ
    J Comput Chem; 2018 Apr; 39(9):472-480. PubMed ID: 28857264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio study of the complexes of halogen-containing molecules RX (X=Cl, Br, and I) and NH3: towards understanding the nature of halogen bonding and the electron-accepting propensities of covalently bonded halogen atoms.
    Zou JW; Jiang YJ; Guo M; Hu GX; Zhang B; Liu HC; Yu QS
    Chemistry; 2005 Jan; 11(2):740-51. PubMed ID: 15584077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnitude and origin of the attraction and directionality of the halogen bonds of the complexes of C6F5X and C6H5X (X = I, Br, Cl and F) with pyridine.
    Tsuzuki S; Wakisaka A; Ono T; Sonoda T
    Chemistry; 2012 Jan; 18(3):951-60. PubMed ID: 22189874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of halogen atom substitution and neutral HCN/anion CN
    Li Y; Wang X; Wang H; Ni Y; Wang H
    J Mol Model; 2021 Feb; 27(3):93. PubMed ID: 33624196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative investigation of interactions of hydrogen, halogen and tetrel bond donors with electron-rich and electron-deficient π-systems.
    Ibrahim MAA; Ahmed OAM; Moussa NAM; El-Taher S; Moustafa H
    RSC Adv; 2019 Oct; 9(56):32811-32820. PubMed ID: 35529736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of a Halogen-Bonded Complex Formed between Methane and Chlorine Monofluoride and Characterisation by Rotational Spectroscopy and Ab Initio Calculations.
    Legon AC; Lister DG; Holloway JH; Mani D; Arunan E
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31766716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen bonds and halogen bonds in complexes of carbones L→C←L as electron donors to HF and ClF, for L = CO, N
    Del Bene JE; Alkorta I; Elguero J
    Phys Chem Chem Phys; 2020 Jul; 22(28):15966-15975. PubMed ID: 32632429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.