These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33989156)

  • 1. Identifying Protein Subcellular Locations With Embeddings-Based node2loc.
    Pan X; Chen L; Liu M; Niu Z; Huang T; Cai YD
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):666-675. PubMed ID: 33989156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting protein subcellular location with network embedding and enrichment features.
    Pan X; Lu L; Cai YD
    Biochim Biophys Acta Proteins Proteom; 2020 Oct; 1868(10):140477. PubMed ID: 32593761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Protein Subcellular Localization With Network and Functional Embeddings.
    Pan X; Li H; Zeng T; Li Z; Chen L; Huang T; Cai YD
    Front Genet; 2020; 11():626500. PubMed ID: 33584818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.
    Li M; Li W; Wu FX; Pan Y; Wang J
    J Theor Biol; 2018 Jun; 447():65-73. PubMed ID: 29571709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying protein complexes based on node embeddings obtained from protein-protein interaction networks.
    Liu X; Yang Z; Sang S; Zhou Z; Wang L; Zhang Y; Lin H; Wang J; Xu B
    BMC Bioinformatics; 2018 Sep; 19(1):332. PubMed ID: 30241459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graph-based prediction of Protein-protein interactions with attributed signed graph embedding.
    Yang F; Fan K; Song D; Lin H
    BMC Bioinformatics; 2020 Jul; 21(1):323. PubMed ID: 32693790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graph embeddings on gene ontology annotations for protein-protein interaction prediction.
    Zhong X; Rajapakse JC
    BMC Bioinformatics; 2020 Dec; 21(Suppl 16):560. PubMed ID: 33323115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An iteration method for identifying yeast essential proteins from heterogeneous network.
    Zhao B; Zhao Y; Zhang X; Zhang Z; Zhang F; Wang L
    BMC Bioinformatics; 2019 Jun; 20(1):355. PubMed ID: 31234779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using protein-protein interaction network information to predict the subcellular locations of proteins in budding yeast.
    Hu LL; Feng KY; Cai YD; Chou KC
    Protein Pept Lett; 2012 Jun; 19(6):644-51. PubMed ID: 22519536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting Essential Proteins Based on Integration of Local Fuzzy Fractal Dimension and Subcellular Location Information.
    Shen L; Zhang J; Wang F; Liu K
    Genes (Basel); 2022 Jan; 13(2):. PubMed ID: 35205217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Neural Network Based Predictions of Protein Interactions Using Primary Sequences.
    Li H; Gong XJ; Yu H; Zhou C
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30071670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MM-StackEns: A new deep multimodal stacked generalization approach for protein-protein interaction prediction.
    Albu AI; Bocicor MI; Czibula G
    Comput Biol Med; 2023 Feb; 153():106526. PubMed ID: 36623437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Completing sparse and disconnected protein-protein network by deep learning.
    Huang L; Liao L; Wu CH
    BMC Bioinformatics; 2018 Mar; 19(1):103. PubMed ID: 29566671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein complexes identification based on go attributed network embedding.
    Xu B; Li K; Zheng W; Liu X; Zhang Y; Zhao Z; He Z
    BMC Bioinformatics; 2018 Dec; 19(1):535. PubMed ID: 30572820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of protein-protein interaction using graph neural networks.
    Jha K; Saha S; Singh H
    Sci Rep; 2022 May; 12(1):8360. PubMed ID: 35589837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting protein-protein interactions using high-quality non-interacting pairs.
    Zhang L; Yu G; Guo M; Wang J
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):525. PubMed ID: 30598096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An iteration model for identifying essential proteins by combining comprehensive PPI network with biological information.
    Li S; Zhang Z; Li X; Tan Y; Wang L; Chen Z
    BMC Bioinformatics; 2021 Sep; 22(1):430. PubMed ID: 34496745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein-protein interaction as a predictor of subcellular location.
    Shin CJ; Wong S; Davis MJ; Ragan MA
    BMC Syst Biol; 2009 Feb; 3():28. PubMed ID: 19243629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-protein interaction site predictions with three-dimensional probability distributions of interacting atoms on protein surfaces.
    Chen CT; Peng HP; Jian JW; Tsai KC; Chang JY; Yang EW; Chen JB; Ho SY; Hsu WL; Yang AS
    PLoS One; 2012; 7(6):e37706. PubMed ID: 22701576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Essential Proteins by Integrating Network Topology, Subcellular Localization Information, Gene Expression Profile and GO Annotation Data.
    Zhang W; Xu J; Zou X
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):2053-2061. PubMed ID: 31095490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.