These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33989157)

  • 1. EpiMC: Detecting Epistatic Interactions Using Multiple Clusterings.
    Wang J; Zhang H; Ren W; Guo M; Yu G
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):243-254. PubMed ID: 33989157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting purely epistatic multi-locus interactions by an omnibus permutation test on ensembles of two-locus analyses.
    Wongseree W; Assawamakin A; Piroonratana T; Sinsomros S; Limwongse C; Chaiyaratana N
    BMC Bioinformatics; 2009 Sep; 10():294. PubMed ID: 19761607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast detection of high-order epistatic interactions in genome-wide association studies using information theoretic measure.
    Leem S; Jeong HH; Lee J; Wee K; Sohn KA
    Comput Biol Chem; 2014 Jun; 50():19-28. PubMed ID: 24581733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HiSSI: high-order SNP-SNP interactions detection based on efficient significant pattern and differential evolution.
    Cao X; Liu J; Guo M; Wang J
    BMC Med Genomics; 2019 Dec; 12(Suppl 7):139. PubMed ID: 31888641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ClusterMI: Detecting High-Order SNP Interactions Based on Clustering and Mutual Information.
    Cao X; Yu G; Liu J; Jia L; Wang J
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30072632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloud computing for detecting high-order genome-wide epistatic interaction via dynamic clustering.
    Guo X; Meng Y; Yu N; Pan Y
    BMC Bioinformatics; 2014 Apr; 15():102. PubMed ID: 24717145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HC-HDSD: A method of hypergraph construction and high-density subgraph detection for inferring high-order epistatic interactions.
    Ding Q; Shang J; Sun Y; Wang X; Liu JX
    Comput Biol Chem; 2019 Feb; 78():440-447. PubMed ID: 30595466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EpiHNet: Detecting epistasis by heterogeneous molecule network.
    Wang X; Zhang H; Wang J; Yu G; Cui L; Guo M
    Methods; 2022 Feb; 198():65-75. PubMed ID: 34555529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DualWMDR: Detecting epistatic interaction with dual screening and multifactor dimensionality reduction.
    Cao X; Yu G; Ren W; Guo M; Wang J
    Hum Mutat; 2020 Mar; 41(3):719-734. PubMed ID: 31705708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CINOEDV: a co-information based method for detecting and visualizing n-order epistatic interactions.
    Shang J; Sun Y; Liu JX; Xia J; Zhang J; Zheng CH
    BMC Bioinformatics; 2016 May; 17(1):214. PubMed ID: 27184783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GWIS--model-free, fast and exhaustive search for epistatic interactions in case-control GWAS.
    Goudey B; Rawlinson D; Wang Q; Shi F; Ferra H; Campbell RM; Stern L; Inouye MT; Ong CS; Kowalczyk A
    BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S10. PubMed ID: 23819779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive rule inference for epistatic interaction detection in genome-wide association studies.
    Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W
    Bioinformatics; 2010 Jan; 26(1):30-7. PubMed ID: 19880365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting genome-wide epistases based on the clustering of relatively frequent items.
    Xie M; Li J; Jiang T
    Bioinformatics; 2012 Jan; 28(1):5-12. PubMed ID: 22053078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GADGETS: a genetic algorithm for detecting epistasis using nuclear families.
    Nodzenski M; Shi M; Krahn JM; Wise AS; Li Y; Li L; Umbach DM; Weinberg CR
    Bioinformatics; 2022 Jan; 38(4):1052-1058. PubMed ID: 34788792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies.
    Yang C; He Z; Wan X; Yang Q; Xue H; Yu W
    Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MDSN: A Module Detection Method for Identifying High-Order Epistatic Interactions.
    Sun Y; Gu Y; Ren Q; Li Y; Shang J; Liu JX; Guan B
    Genes (Basel); 2022 Dec; 13(12):. PubMed ID: 36553670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Multitasking Ant Colony Optimization Method for Detecting Multiorder SNP Interactions.
    Tuo S; Li C; Liu F; Zhu Y; Chen T; Feng Z; Liu H; Li A
    Interdiscip Sci; 2022 Dec; 14(4):814-832. PubMed ID: 35788965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data.
    Liu Y; Maxwell S; Feng T; Zhu X; Elston RC; Koyutürk M; Chance MR
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S15. PubMed ID: 23281810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A random forest approach to the detection of epistatic interactions in case-control studies.
    Jiang R; Tang W; Wu X; Fu W
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S65. PubMed ID: 19208169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilizing Deep Learning and Genome Wide Association Studies for Epistatic-Driven Preterm Birth Classification in African-American Women.
    Fergus P; Montanez CC; Abdulaimma B; Lisboa P; Chalmers C; Pineles B
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):668-678. PubMed ID: 30183645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.