These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33989620)

  • 1. Gram-scale synthesis of ZnS/NiO core-shell hierarchical nanostructures and their enhanced H
    Navakoteswara Rao V; Preethi V; Bhargav U; Ravi P; Kumar A; Sathish M; Krishnan V; Venkatramu V; Mamatha Kumari M; Reddy KR; Shetti NP; Aminabhavi TM; Shankar MV
    Environ Res; 2021 Aug; 199():111323. PubMed ID: 33989620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monodispersed core/shell nanospheres of ZnS/NiO with enhanced H
    Navakoteswara Rao V; Ravi P; Sathish M; Lakshmana Reddy N; Lee K; Sakar M; Prathap P; Mamatha Kumari M; Raghava Reddy K; Nadagouda MN; Aminabhavi TM; Shankar MV
    J Hazard Mater; 2021 Jul; 413():125359. PubMed ID: 33609871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible nanosheets for plasmonic photocatalysis: microwave-assisted organic synthesis of Ni-NiO@Ni
    Rani E; Talebi P; Pulkkinen T; Pankratov V; Singh H
    Nanoscale Adv; 2023 Dec; 5(24):6935-6943. PubMed ID: 38059036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen spillover effect induced by ascorbic acid in CdS/NiO core-shell p-n heterojunction for significantly enhanced photocatalytic H
    Sun G; Xiao B; Shi JW; Mao S; He C; Ma D; Cheng Y
    J Colloid Interface Sci; 2021 Aug; 596():215-224. PubMed ID: 33845229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CdS/ZnS core-shell nanorod heterostructures co-deposited with ultrathin MoS
    Zhang X; Puttaswamy M; Bai H; Hou B; Kumar Verma S
    J Colloid Interface Sci; 2024 Jul; 665():430-442. PubMed ID: 38485632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZnO/ZnS heterostructured nanorod arrays and their efficient photocatalytic hydrogen evolution.
    Bao D; Gao P; Zhu X; Sun S; Wang Y; Li X; Chen Y; Zhou H; Wang Y; Yang P
    Chemistry; 2015 Sep; 21(36):12728-34. PubMed ID: 26189562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Preparation Conditions on the Efficiency of Visible-Light-Driven Hydrogen Generation Based on Ni(II)-Modified Cd
    Mersel MA; Fodor L; Pekker P; Makó É; Horváth O
    Molecules; 2022 Jul; 27(13):. PubMed ID: 35807540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Developments in ZnS-Based Nanostructures Photocatalysts for Wastewater Treatment.
    Isac L; Enesca A
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatially ordered NiOOH-ZnS/CdS heterostructures with an efficient photo-carrier transmission channel for markedly improved H
    Xin X; Qiu Y; Jiang C; Li Y; Wang H; Xu J; Lin H; Wang L; Turkevych V
    Dalton Trans; 2024 Apr; 53(16):7131-7141. PubMed ID: 38568717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoporous Dual-Semiconductor ZnS/CdS Nanocomposites as Efficient Visible Light Photocatalysts for Hydrogen Generation.
    Vamvasakis I; Andreou EK; Armatas GS
    Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon-driven photocatalytic activity of Ni@NiO/NiCO
    Talebi P; Singh H; Rani E; Huttula M; Cao W
    RSC Adv; 2021 Jan; 11(5):2733-2743. PubMed ID: 35424227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. n-p Heterojunction of TiO
    Zhao H; Li CF; Liu LY; Palma B; Hu ZY; Renneckar S; Larter S; Li Y; Kibria MG; Hu J; Su BL
    J Colloid Interface Sci; 2021 Mar; 585():694-704. PubMed ID: 33371948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts.
    Wang X; Shih K; Li XY
    Water Sci Technol; 2010; 61(9):2303-8. PubMed ID: 20418627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Ni modified Au@CdS core-shell nanostructures for enhancing photocatalytic coproduction of hydrogen and benzaldehyde under visible light.
    Zheng Z; Wang T; Han F; Yang Q; Li B
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):47-56. PubMed ID: 34388572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hollow Core-Shell potassium Phosphomolybdate@Cadmium Sulfide@Bismuth sulfide Z-Scheme tandem heterojunctions toward optimized Photothermal-Photocatalytic performance.
    Cui Y; Xing Z; Guo M; Qiu Y; Fang B; Li Z; Yang S; Zhou W
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):942-953. PubMed ID: 34571315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excellent Charge Separation of NCQDs/ZnS Nanocomposites for the Promotion of Photocatalytic H
    Wu P; Liu H; Xie Z; Xie L; Liu G; Xu Y; Chen J; Lu CZ
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16601-16611. PubMed ID: 38502203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots.
    Zhang W; Chen G; Wang J; Ye BC; Zhong X
    Inorg Chem; 2009 Oct; 48(20):9723-31. PubMed ID: 19772326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of AgInS₂-xAg₂S-yZnS-zIn₆S₇ (x, y, z = 0, or 1) Nanocomposites with Composition-Dependent Activity towards Solar Hydrogen Evolution.
    Wang Z; Wang S; Liu J; Jiang W; Zhou Y; An C; Zhang J
    Materials (Basel); 2016 Apr; 9(5):. PubMed ID: 28773454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel polyaniline/NiO nanocomposite as a UV and visible-light photocatalyst for complete degradation of the model dyes and the real textile wastewater.
    Haspulat Taymaz B; Eskizeybek V; Kamış H
    Environ Sci Pollut Res Int; 2021 Feb; 28(6):6700-6718. PubMed ID: 33006103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of shell-core Co
    Yang Y; Ren W; Liu Y; Cai C; Zheng X; Meng S; Zhang L
    J Colloid Interface Sci; 2023 Nov; 649():547-558. PubMed ID: 37356156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.