BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33989666)

  • 21. A duplexed phenotypic screen for the simultaneous detection of inhibitors of the molecular chaperone heat shock protein 90 and modulators of cellular acetylation.
    Hardcastle A; Tomlin P; Norris C; Richards J; Cordwell M; Boxall K; Rowlands M; Jones K; Collins I; McDonald E; Workman P; Aherne W
    Mol Cancer Ther; 2007 Mar; 6(3):1112-22. PubMed ID: 17363504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy.
    Ramaiah MJ; Tangutur AD; Manyam RR
    Life Sci; 2021 Jul; 277():119504. PubMed ID: 33872660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Manganese chloride induces histone acetylation changes in neuronal cells: Its role in manganese-induced damage.
    Guo Z; Zhang Z; Wang Q; Zhang J; Wang L; Zhang Q; Li H; Wu S
    Neurotoxicology; 2018 Mar; 65():255-263. PubMed ID: 29155171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Histone deacetylases and cancer: causes and therapies.
    Marks P; Rifkind RA; Richon VM; Breslow R; Miller T; Kelly WK
    Nat Rev Cancer; 2001 Dec; 1(3):194-202. PubMed ID: 11902574
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pharmacological intervention of histone deacetylase enzymes in the neurodegenerative disorders.
    Gupta R; Ambasta RK; Kumar P
    Life Sci; 2020 Feb; 243():117278. PubMed ID: 31926248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epigenetic histone acetylation and deacetylation mechanisms in experimental models of neurodegenerative disorders.
    Konsoula Z; Barile FA
    J Pharmacol Toxicol Methods; 2012; 66(3):215-20. PubMed ID: 22902970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromatin-associated regulation of HIV-1 transcription: implications for the development of therapeutic strategies.
    Quivy V; De Walque S; Van Lint C
    Subcell Biochem; 2007; 41():371-96. PubMed ID: 17484137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of histone deacetylases by Trichostatin A leads to a HoxB4-independent increase of hematopoietic progenitor/stem cell frequencies as a result of selective survival.
    Obier N; Uhlemann CF; Müller AM
    Cytotherapy; 2010 Nov; 12(7):899-908. PubMed ID: 20210674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Histone acetylation: plants and fungi as model systems for the investigation of histone deacetylases.
    Graessle S; Loidl P; Brosch G
    Cell Mol Life Sci; 2001 May; 58(5-6):704-20. PubMed ID: 11437232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Harnessing the HDAC-histone deacetylase enzymes, inhibitors and how these can be utilised in tissue engineering.
    Lawlor L; Yang XB
    Int J Oral Sci; 2019 Jun; 11(2):20. PubMed ID: 31201303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation of histone acetylation by garlic sulfur compounds.
    Druesne-Pecollo N; Latino-Martel P
    Anticancer Agents Med Chem; 2011 Mar; 11(3):254-9. PubMed ID: 21269249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scaffold dependent histone deacetylase (HDAC) inhibitor induced re-equilibration of the subcellular localization and post-translational modification state of class I HDACs.
    Hanigan TW; Taha TY; Aboukhatwa SM; Frasor J; Petukhov PA
    PLoS One; 2017; 12(10):e0186620. PubMed ID: 29045501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Histone acetylation and the cell-cycle in cancer.
    Wang C; Fu M; Mani S; Wadler S; Senderowicz AM; Pestell RG
    Front Biosci; 2001 Apr; 6():D610-29. PubMed ID: 11282573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fourier transform infrared microspectroscopy identifies protein propionylation in histone deacetylase inhibitor treated glioma cells.
    Singh B; Boopathy S; Somasundaram K; Umapathy S
    J Biophotonics; 2012 Mar; 5(3):230-9. PubMed ID: 22259119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative stress, thiol redox signaling methods in epigenetics.
    Sundar IK; Caito S; Yao H; Rahman I
    Methods Enzymol; 2010; 474():213-44. PubMed ID: 20609913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Posttranslational modifications of histone deacetylases: implications for cardiovascular diseases.
    Eom GH; Kook H
    Pharmacol Ther; 2014 Aug; 143(2):168-80. PubMed ID: 24594235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sodium propionate and sodium butyrate effects on histone deacetylase (HDAC) activity, histone acetylation, and inflammatory gene expression in bovine mammary epithelial cells.
    Silva LG; Ferguson BS; Avila AS; Faciola AP
    J Anim Sci; 2018 Dec; 96(12):5244-5252. PubMed ID: 30252114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MicroRNA-455-3p modulates cartilage development and degeneration through modification of histone H3 acetylation.
    Chen W; Chen L; Zhang Z; Meng F; Huang G; Sheng P; Zhang Z; Liao W
    Biochim Biophys Acta; 2016 Dec; 1863(12):2881-2891. PubMed ID: 27638301
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular pathways: old drugs define new pathways: non-histone acetylation at the crossroads of the DNA damage response and autophagy.
    Botrugno OA; Robert T; Vanoli F; Foiani M; Minucci S
    Clin Cancer Res; 2012 May; 18(9):2436-42. PubMed ID: 22512979
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modifications of cell signalling and redox balance by targeting protein acetylation using natural and engineered molecules: implications in cancer therapy.
    Venkateswaran K; Verma A; Bhatt AN; Agrawala PK; Raj HG; Malhotra S; Prasad AK; Wever OD; Bracke ME; Saso L; Parmar VS; Shrivastava A; Dwarakanath BS
    Curr Top Med Chem; 2014; 14(22):2495-507. PubMed ID: 25478886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.