These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 33989843)
61. A baseline for source localisation using the inverse modelling tool FREAR. De Meutter P; Hoffman I; Delcloo AW J Environ Radioact; 2024 Mar; 273():107372. PubMed ID: 38262302 [TBL] [Abstract][Full Text] [Related]
62. Analysis of radionuclide detection events on the International Monitoring System. Goodwin MA; Chester DL; Britton R; Davies AV; Border J J Environ Radioact; 2022 Feb; 242():106789. PubMed ID: 34872009 [TBL] [Abstract][Full Text] [Related]
63. Investigation on atmospheric radioactivity sample association using consistency with isotopic ratio decay over time at IMS radionuclide stations. Kijima Y; Schoemaker R; Liu B; Kunkle J; Tipka A; Kuśmierczyk-Michulec J; Kalinowski M J Environ Radioact; 2023 Dec; 270():107301. PubMed ID: 37783188 [TBL] [Abstract][Full Text] [Related]
64. Possible impacts of molten salt reactors on the International Monitoring System. Eslinger PW; Johnson CM; McIntyre JI; Simpson CK; Slack JL; Burnett JL J Environ Radioact; 2021 Aug; 234():106622. PubMed ID: 33965293 [TBL] [Abstract][Full Text] [Related]
66. Notes on radioxenon measurements for CTBT verification purposes. Saey PR; De Geer LE Appl Radiat Isot; 2005; 63(5-6):765-73. PubMed ID: 16005237 [TBL] [Abstract][Full Text] [Related]
67. Development of a mobile radioxenon processing system for on-site inspections and the deployment in IFE14. Zhou C; Zhou G; Feng S; Huang D; Zhao X; Wieslander JSE; Khrustalev K; Yu X; Cheng Z; Wu R; Zou R J Environ Radioact; 2016 Oct; 162-163():310-318. PubMed ID: 27323211 [TBL] [Abstract][Full Text] [Related]
68. Radioxenon monitoring in Beijing following the Fukushima Daiichi NPP accident. Shilian W; Qi L; Qinghua M; Zhanying C; Yungang Z; Huijuan L; Huaimao J; Yinzhong C; Shujiang L; Xinjun Z; Yuanqing F; Ling W; Yun L Appl Radiat Isot; 2013 Nov; 81():344-7. PubMed ID: 23601858 [TBL] [Abstract][Full Text] [Related]
69. International challenge to model the long-range transport of radioxenon released from medical isotope production to six Comprehensive Nuclear-Test-Ban Treaty monitoring stations. Maurer C; Baré J; Kusmierczyk-Michulec J; Crawford A; Eslinger PW; Seibert P; Orr B; Philipp A; Ross O; Generoso S; Achim P; Schoeppner M; Malo A; Ringbom A; Saunier O; Quèlo D; Mathieu A; Kijima Y; Stein A; Chai T; Ngan F; Leadbetter SJ; De Meutter P; Delcloo A; Britton R; Davies A; Glascoe LG; Lucas DD; Simpson MD; Vogt P; Kalinowski M; Bowyer TW J Environ Radioact; 2018 Dec; 192():667-686. PubMed ID: 29525108 [TBL] [Abstract][Full Text] [Related]
70. SAUNA III - The next generation noble gas system for verification of nuclear explosions. Aldener M; Axelsson A; Fritioff T; Kastlander J; Ringbom A J Environ Radioact; 2023 Jun; 262():107159. PubMed ID: 37003253 [TBL] [Abstract][Full Text] [Related]
71. Spalax™ new generation: A sensitive and selective noble gas system for nuclear explosion monitoring. Le Petit G; Cagniant A; Gross P; Douysset G; Topin S; Fontaine JP; Taffary T; Moulin C Appl Radiat Isot; 2015 Sep; 103():102-14. PubMed ID: 26073269 [TBL] [Abstract][Full Text] [Related]
72. On the capability to model the background and its uncertainty of CTBT-relevant radioxenon isotopes in Europe by using ensemble dispersion modeling. De Meutter P; Camps J; Delcloo A; Deconninck B; Termonia P J Environ Radioact; 2016 Nov; 164():280-290. PubMed ID: 27532672 [TBL] [Abstract][Full Text] [Related]
73. Cavity-melt partitioning of refractory radionuclides and implications for detecting underground nuclear explosions. Carrigan CR; Sun Y; Pili E; Neuville DR; Antoun T J Environ Radioact; 2020 Aug; 219():106269. PubMed ID: 32339143 [TBL] [Abstract][Full Text] [Related]
74. Measurement of radioxenon and radioargon in soil gas collected in the region of Kvarntorp, Sweden. Kastlander J; Aldener M; Axelsson A; Fritioff T; Söderström C; Ringbom A; Purtschert R J Environ Radioact; 2021 Jan; 226():106458. PubMed ID: 33202288 [TBL] [Abstract][Full Text] [Related]
75. Source term estimation of radioxenon released from the Fukushima Dai-ichi nuclear reactors using measured air concentrations and atmospheric transport modeling. Eslinger PW; Biegalski SR; Bowyer TW; Cooper MW; Haas DA; Hayes JC; Hoffman I; Korpach E; Yi J; Miley HS; Rishel JP; Ungar K; White B; Woods VT J Environ Radioact; 2014 Jan; 127():127-32. PubMed ID: 24211671 [TBL] [Abstract][Full Text] [Related]
76. Radioxenon standards used in laboratory inter-comparisons. Gohla H; Auer M; Cassette P; Hague RK; Lechermann M; Nadalut B Appl Radiat Isot; 2016 Mar; 109():24-29. PubMed ID: 26682890 [TBL] [Abstract][Full Text] [Related]
77. Radon removal trap design and coefficient testing for the development of an effective radioxenon sampling, separation and measurement system. Zhou C; Zhou G; Feng S; Zhao X; Huang D; Tian Z; Yu X; Cheng Z J Environ Radioact; 2019 Apr; 199-200():39-44. PubMed ID: 30684824 [TBL] [Abstract][Full Text] [Related]
78. Thermodynamic determination of condensation behavior for the precursory elements of radioxenon following an underground nuclear explosion. Bourdon B; Pili E J Environ Radioact; 2023 May; 261():107125. PubMed ID: 36739702 [TBL] [Abstract][Full Text] [Related]
79. Evaluation of several relevant fractionation processes as possible explanation for radioxenon isotopic activity ratios in samples taken near underground nuclear explosions in shafts and tunnels. Bourret SM; Kwicklis EM; Stauffer PH J Environ Radioact; 2021 Oct; 237():106698. PubMed ID: 34304113 [TBL] [Abstract][Full Text] [Related]
80. SAUNA field - A sensitive system for analysis of radioxenon in soil gas samples. Aldener M; Axelsson A; Elmgren K; Fritioff T; Kastlander J; Karlkvist L; Ringbom A J Environ Radioact; 2021 Dec; 240():106761. PubMed ID: 34755607 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]