These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 33989856)

  • 1. Process-based LCA of ultrafiltration for drinking water production.
    Prézélus F; Tiruta-Barna L; Remigy JC; Guigui C
    Water Res; 2021 Jul; 199():117156. PubMed ID: 33989856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low maintenance gravity-driven membrane filtration using hollow fibers: Effect of reducing space for biofilm growth and control strategies on permeate flux.
    Stoffel D; Rigo E; Derlon N; Staaks C; Heijnen M; Morgenroth E; Jacquin C
    Sci Total Environ; 2022 Mar; 811():152307. PubMed ID: 34914997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Permeability is the Critical Factor Governing the Life Cycle Environmental Performance of Drinking Water Treatment Using Living Filtration Membranes.
    Jiang D; Hou D; Bechtel C; Zodrow KR; Myers RJ; Zhang T
    Environ Sci Technol; 2020 Jun; 54(12):7651-7658. PubMed ID: 32469515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane backwash cleaning using CO
    Al-Ghamdi MA; Alhadidi A; Ghaffour N
    Water Res; 2019 Nov; 165():114985. PubMed ID: 31445307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of cellulose acetate/polyphenylsulfone derivatives to fabricate ultrafiltration hollow fiber membranes for the removal of arsenic from drinking water.
    Kumar M; RaoT S; Isloor AM; Ibrahim GPS; Inamuddin ; Ismail N; Ismail AF; Asiri AM
    Int J Biol Macromol; 2019 May; 129():715-727. PubMed ID: 30738161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature Enhanced Backwash.
    Aumeier BM; Yüce S; Wessling M
    Water Res; 2018 Oct; 142():18-25. PubMed ID: 29807253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fence that eats the weed: Alginate lyase immobilization on ultrafiltration membrane for fouling mitigation and flux recovery.
    Meshram P; Dave R; Joshi H; Dharani G; Kirubagaran R; Venugopalan VP
    Chemosphere; 2016 Dec; 165():144-151. PubMed ID: 27649310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drinking water production by ultrafiltration of Songhuajiang River with PAC adsorption.
    Xia SJ; Liu YN; Li X; Yao JJ
    J Environ Sci (China); 2007; 19(5):536-9. PubMed ID: 17915681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacteriophage-based strategies for biofouling control in ultrafiltration: In situ biofouling mitigation, biocidal additives and biofilm cleanser.
    Ma W; Panecka M; Tufenkji N; Rahaman MS
    J Colloid Interface Sci; 2018 Aug; 523():254-265. PubMed ID: 29626763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. KNT-artificial neural network model for flux prediction of ultrafiltration membrane producing drinking water.
    Oh HK; Yu MJ; Gwon EM; Koo JY; Kim SG; Koizumi A
    Water Sci Technol; 2004; 50(8):103-10. PubMed ID: 15566193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of polymeric membrane breakage on drinking water quality and an online detection method of the breakage.
    Wu Q; Zhang Z; Cao G; Zhang X
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Oct; 52(12):1126-1132. PubMed ID: 28738172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfiltration of different surface waters with/without coagulation: clear correlations between membrane fouling and hydrophilic biopolymers.
    Kimura K; Tanaka K; Watanabe Y
    Water Res; 2014 Feb; 49():434-43. PubMed ID: 24210507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting of ultrafiltration performances by advanced data analysis.
    Teychene B; Touffet A; Baron J; Welte B; Joyeux M; Gallard H
    Water Res; 2018 Feb; 129():365-374. PubMed ID: 29174826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life cycle and human health risk assessments as tools for decision making in the design and implementation of nanofiltration in drinking water treatment plants.
    Ribera G; Clarens F; Martínez-Lladó X; Jubany I; V Martí ; Rovira M
    Sci Total Environ; 2014 Jan; 466-467():377-86. PubMed ID: 23917380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of filtration mode and backwash water on hydraulically irreversible fouling of ultrafiltration membrane.
    Chang H; Liu B; Liang H; Yu H; Shao S; Li G
    Chemosphere; 2017 Jul; 179():254-264. PubMed ID: 28371709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the influence of air resistance on the hollow fiber membrane process in water treatment based on ultrasonic phased array technology.
    Qin Q; Li J; Jia H; Wang J
    Water Res; 2022 Oct; 224():119109. PubMed ID: 36126629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving ultrafiltration membrane performance with pre-deposited carbon nanotubes/nanofibers layers for drinking water treatment.
    Cheng X; Zhou W; Li P; Ren Z; Wu D; Luo C; Tang X; Wang J; Liang H
    Chemosphere; 2019 Nov; 234():545-557. PubMed ID: 31229716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Operation of passive membrane systems for drinking water treatment.
    Oka PA; Khadem N; Bérubé PR
    Water Res; 2017 May; 115():287-296. PubMed ID: 28285238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling equations and dataset of model parameters for ultrafiltration membrane fabrication.
    Prézélus F; Tiruta-Barna L; Guigui C; Remigy JC
    Data Brief; 2020 Dec; 33():106363. PubMed ID: 33102648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A modified membrane filtration-ultraviolet photocatalytic system for the removal of trace sulfadiazine in drinking water (No. CHEM77354R1).
    Wang Y; Wang X; Zhou A; Li J; Tian L; Zhang M; Sun W; Ding L
    Chemosphere; 2021 Jun; 272():129867. PubMed ID: 33601211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.