These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 33989896)

  • 1. A comprehensive review and analysis of supervised-learning and soft computing techniques for stress diagnosis in humans.
    Sharma S; Singh G; Sharma M
    Comput Biol Med; 2021 Jul; 134():104450. PubMed ID: 33989896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Software Reliability using Bio Inspired Soft Computing Techniques.
    Diwaker C; Tomar P; Poonia RC; Singh V
    J Med Syst; 2018 Apr; 42(5):93. PubMed ID: 29637392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diagnosis of Human Psychological Disorders using Supervised Learning and Nature-Inspired Computing Techniques: A Meta-Analysis.
    Kaur P; Sharma M
    J Med Syst; 2019 May; 43(7):204. PubMed ID: 31139933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining a gravitational search algorithm, particle swarm optimization, and fuzzy rules to improve the classification performance of a feed-forward neural network.
    Huang ML; Chou YC
    Comput Methods Programs Biomed; 2019 Oct; 180():105016. PubMed ID: 31442736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review of Machine Learning Techniques in Soft Tissue Biomechanics and Biomaterials.
    Donmazov S; Saruhan EN; Pekkan K; Piskin S
    Cardiovasc Eng Technol; 2024 Oct; 15(5):522-549. PubMed ID: 38956008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Survey of Soft Computing Approaches in Biomedical Imaging.
    Devi M; Singh S; Tiwari S; Chandra Patel S; Ayana MT
    J Healthc Eng; 2021; 2021():1563844. PubMed ID: 34394885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IoT-Based Reinforcement Learning Using Probabilistic Model for Determining Extensive Exploration through Computational Intelligence for Next-Generation Techniques.
    Tiwari PK; Singh P; Rajagopal NK; Deepa K; Gulavani S; Verma A; Kumar YP
    Comput Intell Neurosci; 2023; 2023():5113417. PubMed ID: 37854640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid temperature prediction in bubbly flow using ant colony optimization algorithm in the fuzzy inference system as a trainer.
    Babanezhad M; Behroyan I; Nakhjiri AT; Marjani A; Heydarinasab A; Shirazian S
    Sci Rep; 2020 Dec; 10(1):21884. PubMed ID: 33318542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction.
    Tabbussum R; Dar AQ
    Environ Sci Pollut Res Int; 2021 May; 28(20):25265-25282. PubMed ID: 33453033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory.
    Oladyshkin S; Praditia T; Kroeker I; Mohammadi F; Nowak W; Otte S
    Neural Netw; 2023 Sep; 166():85-104. PubMed ID: 37480771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Soft Computing Approaches in HealthCare Domain: A Mini Review.
    Gambhir S; Malik SK; Kumar Y
    J Med Syst; 2016 Dec; 40(12):287. PubMed ID: 27796841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.
    Jiménez F; Sánchez G; Juárez JM
    Artif Intell Med; 2014 Mar; 60(3):197-219. PubMed ID: 24525210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multimodal convolutional neuro-fuzzy network for emotion understanding of movie clips.
    Nguyen TL; Kavuri S; Lee M
    Neural Netw; 2019 Oct; 118():208-219. PubMed ID: 31299625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of deep learning restoration methods for the extraction of particle dynamics in noisy microscopy image sequences.
    Kefer P; Iqbal F; Locatelli M; Lawrimore J; Zhang M; Bloom K; Bonin K; Vidi PA; Liu J
    Mol Biol Cell; 2021 Apr; 32(9):903-914. PubMed ID: 33502895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial intelligence and machine learning approaches in composting process: A review.
    Aydın Temel F; Cagcag Yolcu O; Turan NG
    Bioresour Technol; 2023 Feb; 370():128539. PubMed ID: 36608858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Overview of Machine Learning within Embedded and Mobile Devices-Optimizations and Applications.
    Ajani TS; Imoize AL; Atayero AA
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34203119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fuzzy Inspired Deep Belief Network for the Traffic Flow Prediction in Intelligent Transportation System Using Flow Strength Indicators.
    George S; Santra AK
    Big Data; 2020 Aug; 8(4):291-307. PubMed ID: 32633544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. KPCA-WRF-prediction of heart rate using deep feature fusion and machine learning classification with tuned weighted hyper-parameter.
    Christabel GJ; Subhajini AC
    Network; 2023; 34(4):250-281. PubMed ID: 37534974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature selection methods for big data bioinformatics: A survey from the search perspective.
    Wang L; Wang Y; Chang Q
    Methods; 2016 Dec; 111():21-31. PubMed ID: 27592382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.