BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 33990140)

  • 1. Replica Exchange Molecular Dynamics of Diphenylalanine Amyloid Peptides in Electric Fields.
    Narayan B; Herbert C; Rodriguez BJ; Brooks BR; Buchete NV
    J Phys Chem B; 2021 May; 125(20):5233-5242. PubMed ID: 33990140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field.
    Kelly CM; Northey T; Ryan K; Brooks BR; Kholkin AL; Rodriguez BJ; Buchete NV
    Biophys Chem; 2015 Jan; 196():16-24. PubMed ID: 25240398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational analysis of replica exchange MD: Temperature-dependent Markov networks for FF amyloid peptides.
    Narayan B; Herbert C; Yuan Y; Rodriguez BJ; Brooks BR; Buchete NV
    J Chem Phys; 2018 Aug; 149(7):072323. PubMed ID: 30134732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does Replica Exchange with Solute Tempering Efficiently Sample Aβ Peptide Conformational Ensembles?
    Smith AK; Lockhart C; Klimov DK
    J Chem Theory Comput; 2016 Oct; 12(10):5201-5214. PubMed ID: 27560127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of pH on the self-assembly of diphenylalanine peptides: molecular insights from coarse-grained simulations.
    Wang Y; Wang K; Zhao X; Xu X; Sun T
    Soft Matter; 2023 Aug; 19(30):5749-5757. PubMed ID: 37462931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the replica-exchange molecular-dynamics method for efficient sampling in the temperature space.
    Chen C; Xiao Y; Huang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052708. PubMed ID: 26066200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of solvent on the self-assembly of dialanine and diphenylalanine peptides.
    Rissanou AN; Georgilis E; Kasotakis E; Mitraki A; Harmandaris V
    J Phys Chem B; 2013 Apr; 117(15):3962-75. PubMed ID: 23510047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of force fields on the conformational and dynamic properties of amyloid β(1-40) dimer explored by replica exchange molecular dynamics simulations.
    Watts CR; Gregory A; Frisbie C; Lovas S
    Proteins; 2018 Mar; 86(3):279-300. PubMed ID: 29235155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformation Dependence of Diphenylalanine Self-Assembly Structures and Dynamics: Insights from Hybrid-Resolution Simulations.
    Xiong Q; Jiang Y; Cai X; Yang F; Li Z; Han W
    ACS Nano; 2019 Apr; 13(4):4455-4468. PubMed ID: 30869864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of cyclo-diphenylalanine peptides in vacuum.
    Jeon J; Shell MS
    J Phys Chem B; 2014 Jun; 118(24):6644-52. PubMed ID: 24877752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replica exchange simulation method using temperature and solvent viscosity.
    Nguyen PH
    J Chem Phys; 2010 Apr; 132(14):144109. PubMed ID: 20405987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of enhanced sampling provided by accelerated molecular dynamics with Hamiltonian replica exchange methods.
    Roe DR; Bergonzo C; Cheatham TE
    J Phys Chem B; 2014 Apr; 118(13):3543-52. PubMed ID: 24625009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide dimerization-dissociation rates from replica exchange molecular dynamics.
    Leahy CT; Kells A; Hummer G; Buchete NV; Rosta E
    J Chem Phys; 2017 Oct; 147(15):152725. PubMed ID: 29055328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Replica Exchange Molecular Dynamics: A Practical Application Protocol with Solutions to Common Problems and a Peptide Aggregation and Self-Assembly Example.
    Qi R; Wei G; Ma B; Nussinov R
    Methods Mol Biol; 2018; 1777():101-119. PubMed ID: 29744830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Efficiency of Replica Exchange Simulations through Use of a Hybrid Explicit/Implicit Solvation Model.
    Okur A; Wickstrom L; Layten M; Geney R; Song K; Hornak V; Simmerling C
    J Chem Theory Comput; 2006 Mar; 2(2):420-33. PubMed ID: 26626529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Sampling of Molecular Dynamics Simulations of a Polyalanine Octapeptide: Effects of the Periodic Boundary Conditions on Peptide Conformation.
    Kasahara K; Sakuraba S; Fukuda I
    J Phys Chem B; 2018 Mar; 122(9):2495-2503. PubMed ID: 29439570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced conformational sampling of carbohydrates by Hamiltonian replica-exchange simulation.
    Mishra SK; Kara M; Zacharias M; Koca J
    Glycobiology; 2014 Jan; 24(1):70-84. PubMed ID: 24134878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of various parameters in the replica-exchange molecular dynamics method: Number of replicas, replica-exchange frequency, and thermostat coupling time constant.
    Iwai R; Kasahara K; Takahashi T
    Biophys Physicobiol; 2018; 15():165-172. PubMed ID: 30250775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional replica exchange approach for peptide-peptide interactions.
    Gee J; Shell MS
    J Chem Phys; 2011 Feb; 134(6):064112. PubMed ID: 21322666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.