These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 33990299)
1. Mannose- and Mannobiose-Specific Responses of the Insect-Associated Cellulolytic Bacterium Ohashi K; Hataya S; Nakata A; Matsumoto K; Kato N; Sato W; Carlos-Shanley C; Beebe ET; Currie CR; Fox BG; Takasuka TE Appl Environ Microbiol; 2021 Jun; 87(14):e0271920. PubMed ID: 33990299 [TBL] [Abstract][Full Text] [Related]
2. Galactomannan Degrading Enzymes from the Mannan Utilization Gene Cluster of Alkaliphilic Bacillus sp. N16-5 and Their Synergy on Galactomannan Degradation. Song Y; Sun W; Fan Y; Xue Y; Liu D; Ma C; Liu W; Mosher W; Luo X; Li Z; Ma W; Zhang T J Agric Food Chem; 2018 Oct; 66(42):11055-11063. PubMed ID: 30351049 [TBL] [Abstract][Full Text] [Related]
3. A highly active endo-β-1,4-mannanase produced by Cellulosimicrobium sp. strain HY-13, a hemicellulolytic bacterium in the gut of Eisenia fetida. Kim DY; Ham SJ; Lee HJ; Kim YJ; Shin DH; Rhee YH; Son KH; Park HY Enzyme Microb Technol; 2011 Apr; 48(4-5):365-70. PubMed ID: 22112951 [TBL] [Abstract][Full Text] [Related]
4. Cellulolytic Streptomyces strains associated with herbivorous insects share a phylogenetically linked capacity to degrade lignocellulose. Book AJ; Lewin GR; McDonald BR; Takasuka TE; Doering DT; Adams AS; Blodgett JA; Clardy J; Raffa KF; Fox BG; Currie CR Appl Environ Microbiol; 2014 Aug; 80(15):4692-701. PubMed ID: 24837391 [TBL] [Abstract][Full Text] [Related]
5. BdPUL12 depolymerizes β-mannan-like glycans into mannooligosaccharides and mannose, which serve as carbon sources for Bacteroides dorei and gut probiotics. Gao G; Cao J; Mi L; Feng D; Deng Q; Sun X; Zhang H; Wang Q; Wang J Int J Biol Macromol; 2021 Sep; 187():664-674. PubMed ID: 34339781 [TBL] [Abstract][Full Text] [Related]
6. Aerobic deconstruction of cellulosic biomass by an insect-associated Streptomyces. Takasuka TE; Book AJ; Lewin GR; Currie CR; Fox BG Sci Rep; 2013; 3():1030. PubMed ID: 23301151 [TBL] [Abstract][Full Text] [Related]
7. A noncellulosomal mannanase26E contains a CBM59 in Clostridium cellulovorans. Yamamoto K; Tamaru Y Biomed Res Int; 2014; 2014():438787. PubMed ID: 24795881 [TBL] [Abstract][Full Text] [Related]
8. Proteomic Characterization of Lignocellulolytic Enzymes Secreted by the Insect-Associated Fungus Hori C; Song R; Matsumoto K; Matsumoto R; Minkoff BB; Oita S; Hara H; Takasuka TE Appl Environ Microbiol; 2020 Apr; 86(8):. PubMed ID: 32060026 [TBL] [Abstract][Full Text] [Related]
9. Secretory expression of β-mannanase in Saccharomyces cerevisiae and its high efficiency for hydrolysis of mannans to mannooligosaccharides. Liu J; Basit A; Miao T; Zheng F; Yu H; Wang Y; Jiang W; Cao Y Appl Microbiol Biotechnol; 2018 Dec; 102(23):10027-10041. PubMed ID: 30215129 [TBL] [Abstract][Full Text] [Related]
10. Consolidated bioprocessing of plant biomass to polyhydroxyalkanoate by co-culture of Streptomyces sp. SirexAA-E and Priestia megaterium. Kumar V; Fox BG; Takasuka TE Bioresour Technol; 2023 May; 376():128934. PubMed ID: 36940873 [TBL] [Abstract][Full Text] [Related]
11. Biocatalytic characterization of an endo-β-1,4-mannanase produced by Paenibacillus sp. strain HY-8. Kim DY; Chung CW; Cho HY; Rhee YH; Shin DH; Son KH; Park HY Biotechnol Lett; 2017 Jan; 39(1):149-155. PubMed ID: 27714555 [TBL] [Abstract][Full Text] [Related]
12. Cloning and biochemical characterization of an endo-1,4-β-mannanase from the coffee berry borer Hypothenemus hampei. Aguilera-Gálvez C; Vásquez-Ospina JJ; Gutiérrez-Sanchez P; Acuña-Zornosa R BMC Res Notes; 2013 Aug; 6():333. PubMed ID: 23965285 [TBL] [Abstract][Full Text] [Related]
13. Differentiation of carbohydrate gums and mixtures using fourier transform infrared spectroscopy and chemometrics. Prado BM; Kim S; Ozen BF; Mauer LJ J Agric Food Chem; 2005 Apr; 53(8):2823-9. PubMed ID: 15826025 [TBL] [Abstract][Full Text] [Related]
14. Cloning and characterization of a modular GH5 β-1,4-mannanase with high specific activity from the fibrolytic bacterium Cellulosimicrobium sp. strain HY-13. Kim DY; Ham SJ; Lee HJ; Cho HY; Kim JH; Kim YJ; Shin DH; Rhee YH; Son KH; Park HY Bioresour Technol; 2011 Oct; 102(19):9185-92. PubMed ID: 21767948 [TBL] [Abstract][Full Text] [Related]
15. Expression, purification and characterization of a functional carbohydrate-binding module from Streptomyces sp. SirexAA-E. Lim S; Chundawat SP; Fox BG Protein Expr Purif; 2014 Jun; 98():1-9. PubMed ID: 24607362 [TBL] [Abstract][Full Text] [Related]
16. Production of galacto-manno-oligosaccharides from guar gum by beta-mannanase from Penicillium oxalicum SO. Kurakake M; Sumida T; Masuda D; Oonishi S; Komaki T J Agric Food Chem; 2006 Oct; 54(20):7885-9. PubMed ID: 17002466 [TBL] [Abstract][Full Text] [Related]
17. β-mannanase (Man26A) and α-galactosidase (Aga27A) synergism - a key factor for the hydrolysis of galactomannan substrates. Malgas S; van Dyk SJ; Pletschke BI Enzyme Microb Technol; 2015 Mar; 70():1-8. PubMed ID: 25659626 [TBL] [Abstract][Full Text] [Related]
18. Implication of a galactomannan-binding GH2 β-mannosidase in mannan utilization by Caldicellulosiruptor bescii. Liang D; Gong L; Yao B; Xue X; Qin X; Ma R; Luo H; Xie X; Su X Biochem Biophys Res Commun; 2015 Nov; 467(2):334-40. PubMed ID: 26433124 [TBL] [Abstract][Full Text] [Related]
19. Purification and characterization of a low molecular weight of beta-mannanase from Penicillium occitanis Pol6. Blibech M; Ghorbel RE; Fakhfakh I; Ntarima P; Piens K; Bacha AB; Chaabouni SE Appl Biochem Biotechnol; 2010 Feb; 160(4):1227-40. PubMed ID: 19418261 [TBL] [Abstract][Full Text] [Related]
20. A celluloytic complex from Clostridium cellulovorans consisting of mannanase B and endoglucanase E has synergistic effects on galactomannan degradation. Jeon SD; Yu KO; Kim SW; Han SO Appl Microbiol Biotechnol; 2011 Apr; 90(2):565-72. PubMed ID: 21311881 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]