These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 33991026)
1. Engineering of a Thermostable Biocatalyst for the Synthesis of 2-O-Glucosylglycerol. Franceus J; Ubiparip Z; Beerens K; Desmet T Chembiochem; 2021 Sep; 22(18):2777-2782. PubMed ID: 33991026 [TBL] [Abstract][Full Text] [Related]
2. Exploring the sequence diversity in glycoside hydrolase family 13_18 reveals a novel glucosylglycerol phosphorylase. Franceus J; Decuyper L; D'hooghe M; Desmet T Appl Microbiol Biotechnol; 2018 Apr; 102(7):3183-3191. PubMed ID: 29470619 [TBL] [Abstract][Full Text] [Related]
3. Converting Bulk Sugars into Functional Fibers: Discovery and Application of a Thermostable β-1,3-Oligoglucan Phosphorylase. De Doncker M; Vleminckx S; Franceus J; Vercauteren R; Desmet T J Agric Food Chem; 2024 May; 72(18):10497-10505. PubMed ID: 38659290 [TBL] [Abstract][Full Text] [Related]
4. Spatially sequential co-immobilization of phosphorylases in tiny environments and its application in the synthesis of glucosyl glycerol. Yang W; Sun H; Cui Z; Chen L; Ji Y; Lu F; Liu Y Int J Biol Macromol; 2024 Nov; 279(Pt 2):135139. PubMed ID: 39208907 [TBL] [Abstract][Full Text] [Related]
5. Sucrose Phosphorylase and Related Enzymes in Glycoside Hydrolase Family 13: Discovery, Application and Engineering. Franceus J; Desmet T Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32260541 [TBL] [Abstract][Full Text] [Related]
6. Structural basis for reversible phosphorolysis and hydrolysis reactions of 2-O-α-glucosylglycerol phosphorylase. Touhara KK; Nihira T; Kitaoka M; Nakai H; Fushinobu S J Biol Chem; 2014 Jun; 289(26):18067-75. PubMed ID: 24828502 [TBL] [Abstract][Full Text] [Related]
7. On the donor substrate dependence of group-transfer reactions by hydrolytic enzymes: Insight from kinetic analysis of sucrose phosphorylase-catalyzed transglycosylation. Klimacek M; Sigg A; Nidetzky B Biotechnol Bioeng; 2020 Oct; 117(10):2933-2943. PubMed ID: 32573774 [TBL] [Abstract][Full Text] [Related]
8. Aromatic interactions at the catalytic subsite of sucrose phosphorylase: their roles in enzymatic glucosyl transfer probed with Phe52→Ala and Phe52→Asn mutants. Wildberger P; Luley-Goedl C; Nidetzky B FEBS Lett; 2011 Feb; 585(3):499-504. PubMed ID: 21219904 [TBL] [Abstract][Full Text] [Related]
9. Glucosylglycerate Phosphorylase, an Enzyme with Novel Specificity Involved in Compatible Solute Metabolism. Franceus J; Pinel D; Desmet T Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28754708 [TBL] [Abstract][Full Text] [Related]
10. High-Yield Biosynthesis of Glucosylglycerol through Coupling Phosphorolysis and Transglycosylation Reactions. Zhang T; Yang J; Tian C; Ren C; Chen P; Men Y; Sun Y J Agric Food Chem; 2020 Dec; 68(51):15249-15256. PubMed ID: 33306378 [TBL] [Abstract][Full Text] [Related]
11. Functional analysis of truncated and site-directed mutagenesis dextransucrases to produce different type dextrans. Wang C; Zhang HB; Li MQ; Hu XQ; Li Y Enzyme Microb Technol; 2017 Jul; 102():26-34. PubMed ID: 28465057 [TBL] [Abstract][Full Text] [Related]
12. Reversibility of a Point Mutation Induced Domain Shift: Expanding the Conformational Space of a Sucrose Phosphorylase. Kraus M; Grimm C; Seibel J Sci Rep; 2018 Jul; 8(1):10490. PubMed ID: 29993032 [TBL] [Abstract][Full Text] [Related]
13. Three-level hybrid modeling for systematic optimization of biocatalytic synthesis: α-glucosyl glycerol production by enzymatic trans-glycosylation from sucrose. Sigg A; Klimacek M; Nidetzky B Biotechnol Bioeng; 2021 Oct; 118(10):4028-4040. PubMed ID: 34232503 [TBL] [Abstract][Full Text] [Related]
14. Creating Space for Large Acceptors: Rational Biocatalyst Design for Resveratrol Glycosylation in an Aqueous System. Dirks-Hofmeister ME; Verhaeghe T; De Winter K; Desmet T Angew Chem Int Ed Engl; 2015 Aug; 54(32):9289-92. PubMed ID: 26074151 [TBL] [Abstract][Full Text] [Related]
15. Acid-base catalysis in Leuconostoc mesenteroides sucrose phosphorylase probed by site-directed mutagenesis and detailed kinetic comparison of wild-type and Glu237-->Gln mutant enzymes. Schwarz A; Brecker L; Nidetzky B Biochem J; 2007 May; 403(3):441-9. PubMed ID: 17233628 [TBL] [Abstract][Full Text] [Related]
16. Sucrose phosphorylase from Alteromonas mediterranea: Structural insight into the regioselective α-glucosylation of (+)-catechin. Goux M; Demonceaux M; Hendrickx J; Solleux C; Lormeau E; Fredslund F; Tezé D; Offmann B; André-Miral C Biochimie; 2024 Jun; 221():13-19. PubMed ID: 38199518 [TBL] [Abstract][Full Text] [Related]
17. The role of Asp-295 in the catalytic mechanism of Leuconostoc mesenteroides sucrose phosphorylase probed with site-directed mutagenesis. Mueller M; Nidetzky B FEBS Lett; 2007 Apr; 581(7):1403-8. PubMed ID: 17350620 [TBL] [Abstract][Full Text] [Related]
18. Mechanistic differences among retaining disaccharide phosphorylases: insights from kinetic analysis of active site mutants of sucrose phosphorylase and alpha,alpha-trehalose phosphorylase. Goedl C; Schwarz A; Mueller M; Brecker L; Nidetzky B Carbohydr Res; 2008 Aug; 343(12):2032-40. PubMed ID: 18346723 [TBL] [Abstract][Full Text] [Related]
19. Development of thermostable sucrose phosphorylase by semi-rational design for efficient biosynthesis of alpha-D-glucosylglycerol. Xia Y; Li X; Yang L; Luo X; Shen W; Cao Y; Peplowski L; Chen X Appl Microbiol Biotechnol; 2021 Oct; 105(19):7309-7319. PubMed ID: 34542685 [TBL] [Abstract][Full Text] [Related]
20. Redesign of the Active Site of Sucrose Phosphorylase through a Clash-Induced Cascade of Loop Shifts. Kraus M; Grimm C; Seibel J Chembiochem; 2016 Jan; 17(1):33-6. PubMed ID: 26527586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]