These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 33991170)

  • 21. Deep Learning Automated Detection of Reticular Pseudodrusen from Fundus Autofluorescence Images or Color Fundus Photographs in AREDS2.
    Keenan TDL; Chen Q; Peng Y; Domalpally A; Agrón E; Hwang CK; Thavikulwat AT; Lee DH; Li D; Wong WT; Lu Z; Chew EY
    Ophthalmology; 2020 Dec; 127(12):1674-1687. PubMed ID: 32447042
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep learning-based detection of diabetic macular edema using optical coherence tomography and fundus images: A meta-analysis.
    Manikandan S; Raman R; Rajalakshmi R; Tamilselvi S; Surya RJ
    Indian J Ophthalmol; 2023 May; 71(5):1783-1796. PubMed ID: 37203031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. U-Net-Based Segmentation of Current Imaging Biomarkers in OCT-Scans of Patients with Age Related Macular Degeneration.
    Yildirim K; Al-Nawaiseh S; Ehlers S; Schießer L; Storck M; Brix T; Eter N; Varghese J
    Stud Health Technol Inform; 2023 May; 302():947-951. PubMed ID: 37203542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A 3D Deep Learning System for Detecting Referable Glaucoma Using Full OCT Macular Cube Scans.
    Russakoff DB; Mannil SS; Oakley JD; Ran AR; Cheung CY; Dasari S; Riyazzuddin M; Nagaraj S; Rao HL; Chang D; Chang RT
    Transl Vis Sci Technol; 2020 Feb; 9(2):12. PubMed ID: 32704418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of Deep Learning for Detailed Severity Characterization and Estimation of 5-Year Risk Among Patients With Age-Related Macular Degeneration.
    Burlina PM; Joshi N; Pacheco KD; Freund DE; Kong J; Bressler NM
    JAMA Ophthalmol; 2018 Dec; 136(12):1359-1366. PubMed ID: 30242349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fully Automated Robust System to Detect Retinal Edema, Central Serous Chorioretinopathy, and Age Related Macular Degeneration from Optical Coherence Tomography Images.
    Khalid S; Akram MU; Hassan T; Nasim A; Jameel A
    Biomed Res Int; 2017; 2017():7148245. PubMed ID: 28424788
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automatic diagnosis of abnormal macula in retinal optical coherence tomography images using wavelet-based convolutional neural network features and random forests classifier.
    Rasti R; Mehridehnavi A; Rabbani H; Hajizadeh F
    J Biomed Opt; 2018 Mar; 23(3):1-10. PubMed ID: 29564864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep Learning for Prediction of AMD Progression: A Pilot Study.
    Russakoff DB; Lamin A; Oakley JD; Dubis AM; Sivaprasad S
    Invest Ophthalmol Vis Sci; 2019 Feb; 60(2):712-722. PubMed ID: 30786275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a deep learning algorithm for myopic maculopathy classification based on OCT images using transfer learning.
    He X; Ren P; Lu L; Tang X; Wang J; Yang Z; Han W
    Front Public Health; 2022; 10():1005700. PubMed ID: 36211704
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Deep Learning Algorithm for Prediction of Age-Related Eye Disease Study Severity Scale for Age-Related Macular Degeneration from Color Fundus Photography.
    Grassmann F; Mengelkamp J; Brandl C; Harsch S; Zimmermann ME; Linkohr B; Peters A; Heid IM; Palm C; Weber BHF
    Ophthalmology; 2018 Sep; 125(9):1410-1420. PubMed ID: 29653860
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Feasibility of support vector machine learning in age-related macular degeneration using small sample yielding sparse optical coherence tomography data.
    Quellec G; Kowal J; Hasler PW; Scholl HPN; Zweifel S; Konstantinos B; de Carvalho JER; Heeren T; Egan C; Tufail A; Maloca PM
    Acta Ophthalmol; 2019 Aug; 97(5):e719-e728. PubMed ID: 30839157
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Classification of optical coherence tomography images using a capsule network.
    Tsuji T; Hirose Y; Fujimori K; Hirose T; Oyama A; Saikawa Y; Mimura T; Shiraishi K; Kobayashi T; Mizota A; Kotoku J
    BMC Ophthalmol; 2020 Mar; 20(1):114. PubMed ID: 32192460
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AOCT-NET: a convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images.
    Alqudah AM
    Med Biol Eng Comput; 2020 Jan; 58(1):41-53. PubMed ID: 31728935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep Learning Classification Models Built with Two-step Transfer Learning for Age Related Macular Degeneration Diagnosis.
    An G; Akiba M; Yokota H; Motozawa N; Takagi S; Mandai M; Kitahata S; Hirami Y; Takahashi M; Kurimoto Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2049-2052. PubMed ID: 31946304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated classification of normal and Stargardt disease optical coherence tomography images using deep learning.
    Shah M; Roomans Ledo A; Rittscher J
    Acta Ophthalmol; 2020 Sep; 98(6):e715-e721. PubMed ID: 31981283
    [TBL] [Abstract][Full Text] [Related]  

  • 36. UD-MIL: Uncertainty-Driven Deep Multiple Instance Learning for OCT Image Classification.
    Wang X; Tang F; Chen H; Luo L; Tang Z; Ran AR; Cheung CY; Heng PA
    IEEE J Biomed Health Inform; 2020 Dec; 24(12):3431-3442. PubMed ID: 32248132
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development and validation of a deep-learning algorithm for the detection of neovascular age-related macular degeneration from colour fundus photographs.
    Keel S; Li Z; Scheetz J; Robman L; Phung J; Makeyeva G; Aung K; Liu C; Yan X; Meng W; Guymer R; Chang R; He M
    Clin Exp Ophthalmol; 2019 Nov; 47(8):1009-1018. PubMed ID: 31215760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automatic diagnosis of macular diseases from OCT volume based on its two-dimensional feature map and convolutional neural network with attention mechanism.
    Sun Y; Zhang H; Yao X
    J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32940026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical Coherence Tomography-Based Deep-Learning Models for Classifying Normal and Age-Related Macular Degeneration and Exudative and Non-Exudative Age-Related Macular Degeneration Changes.
    Motozawa N; An G; Takagi S; Kitahata S; Mandai M; Hirami Y; Yokota H; Akiba M; Tsujikawa A; Takahashi M; Kurimoto Y
    Ophthalmol Ther; 2019 Dec; 8(4):527-539. PubMed ID: 31407214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Weakly supervised lesion localization for age-related macular degeneration detection using optical coherence tomography images.
    Yang HL; Kim JJ; Kim JH; Kang YK; Park DH; Park HS; Kim HK; Kim MS
    PLoS One; 2019; 14(4):e0215076. PubMed ID: 30951557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.