BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 339912)

  • 21. N2O reduction and HD formation by nitrogenase from a nifV mutant of Klebsiella pneumoniae.
    Liang J; Burris RH
    J Bacteriol; 1989 Jun; 171(6):3176-80. PubMed ID: 2656643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The molybdenum and vanadium nitrogenases of Azotobacter chroococcum: effect of elevated temperature on N2 reduction.
    Dilworth MJ; Eldridge ME; Eady RR
    Biochem J; 1993 Jan; 289 ( Pt 2)(Pt 2):395-400. PubMed ID: 8424785
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clostridial pyruvate oxidoreductase and the pyruvate-oxidizing enzyme specific to nitrogen fixation in Klebsiella pneumoniae are similar enzymes.
    Wahl RC; Orme-Johnson WH
    J Biol Chem; 1987 Aug; 262(22):10489-96. PubMed ID: 3038882
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic studies of Bacillus polymyxa nitrogenase.
    Hermann TE; Wilson PW
    J Bacteriol; 1976 May; 126(2):743-50. PubMed ID: 770451
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energetics of biological nitrogen fixation: determination of the ratio of formation of H2 to NH4+ catalysed by nitrogenase of Klebsiella pneumoniae in vivo.
    Andersen K; Shanmugam KT
    J Gen Microbiol; 1977 Nov; 103(1):107-22. PubMed ID: 22579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitrogenase of Klebsiella pneumoniae. Hydrazine is a product of azide reduction.
    Dilworth MJ; Thorneley RN
    Biochem J; 1981 Mar; 193(3):971-83. PubMed ID: 7030315
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitrogenase of Klebsiella pneumoniae. Purification and properties of the component proteins.
    Eady RR; Smith BE; Cook KA; Postgate JR
    Biochem J; 1972 Jul; 128(3):655-75. PubMed ID: 4344006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitrogenase synthesis in Klebsiella pneumoniae: comparison of ammonium and oxygen regulation.
    Eady RR; Issack R; Kennedy C; Postgate JR; Ratcliffe HD
    J Gen Microbiol; 1978 Feb; 104(2):277-85. PubMed ID: 24675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic studies on Klebsiella pneumoniae nitrogenase.
    Parejko RA; Wilson PW
    Proc Natl Acad Sci U S A; 1971 Sep; 68(9):2016-8. PubMed ID: 4943781
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On reversible H2 loss upon N2 binding to FeMo-cofactor of nitrogenase.
    Yang ZY; Khadka N; Lukoyanov D; Hoffman BM; Dean DR; Seefeldt LC
    Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16327-32. PubMed ID: 24062454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetics of nitrogenase of Klebsiella pneumoniae. Heterotropic interactions between magnesium-adenosine 5'-diphosphate and magnesium-adenosine 5'-triphosphate.
    Thorneley RN; Cornish-Bowden A
    Biochem J; 1977 Aug; 165(2):255-62. PubMed ID: 336036
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Model for acetylene reduction by nitrogenase derived from density functional theory.
    Kästner J; Blöchl PE
    Inorg Chem; 2005 Jun; 44(13):4568-75. PubMed ID: 15962963
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitrogenase of Klebsiella pneumoniae: kinetics of formation of the transition-state complex and evidence for an altered conformation of MoFe protein lacking a FeMoco centre.
    Yousafzai FK; Eady RR
    Biochem J; 1997 Sep; 326 ( Pt 3)(Pt 3):637-40. PubMed ID: 9307010
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of some physiological factors on nitrogenase activity and nitrogenase mediated hydrogen evolution by mixed microbial culture.
    Kumar A; Jain SR; Kalia VC; Joshi AP
    Biochem Mol Biol Int; 1998 Jun; 45(2):245-53. PubMed ID: 9678245
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Klebsiella pneumoniae nitrogenase: pre-steady-state absorbance changes show that redox changes occur in the MoFe protein that depend on substrate and component protein ratio; a role for P-centres in reducing dinitrogen?
    Lowe DJ; Fisher K; Thorneley RN
    Biochem J; 1993 May; 292 ( Pt 1)(Pt 1):93-8. PubMed ID: 8389132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of nitrogenase switch-off by oxygen.
    Goldberg I; Nadler V; Hochman A
    J Bacteriol; 1987 Feb; 169(2):874-9. PubMed ID: 3542974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of high pN2 and high pD2 on NH3 production, H2 evolution, and HD formation by nitrogenases.
    Jensen BB; Burris RH
    Biochemistry; 1985 Feb; 24(5):1141-7. PubMed ID: 3913463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differentiation of acetylene-reduction sites by stereoselective proton addition during Azotobacter vinelandii nitrogenase-catalyzed C2D2 reduction.
    Han J; Newton WE
    Biochemistry; 2004 Mar; 43(10):2947-56. PubMed ID: 15005631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrogenases of Klebsiella pneumoniae and Azotobacter chroococum. Complex formation between the component proteins.
    Thorneley RN; Eady RR; Yates MG
    Biochim Biophys Acta; 1975 Oct; 403(2):269-84. PubMed ID: 1101961
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduction of cyclic and acyclic diazene derivates by Azotobacter vinelandii nitrogenase: diazirine and trans-dimethyldiazene.
    McKenna CE; Simeonov AM; Eran H; Bravo-Leerabhandh M
    Biochemistry; 1996 Apr; 35(14):4502-14. PubMed ID: 8605200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.