These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33991258)

  • 1. Effect of magnetic field on the motion of two rigid spheres embedded in porous media with slip surfaces.
    El-Sapa S; Alsudais NS
    Eur Phys J E Soft Matter; 2021 May; 44(5):68. PubMed ID: 33991258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translation and rotation of slightly deformed colloidal spheres experiencing slip.
    Chang YC; Keh HJ
    J Colloid Interface Sci; 2009 Feb; 330(1):201-10. PubMed ID: 19012900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drag and Torque on Clusters of N Arbitrary Spheres at Low Reynolds Number.
    Filippov AV
    J Colloid Interface Sci; 2000 Sep; 229(1):184-195. PubMed ID: 10942557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An analysis of slippage effects on a solid sphere enclosed by a non-concentric cavity filled with a couple stress fluids.
    Al-Hanaya A; El-Sapa S
    Sci Rep; 2023 Nov; 13(1):19595. PubMed ID: 37949870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D simulations of hydrodynamic drag forces on two porous spheres moving along their centerline.
    Wu RM; Lin MH; Lin HY; Hsu RY
    J Colloid Interface Sci; 2006 Sep; 301(1):227-35. PubMed ID: 16730016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady boundary layer slip flow along with heat and mass transfer over a flat porous plate embedded in a porous medium.
    Aziz A; Siddique JI; Aziz T
    PLoS One; 2014; 9(12):e114544. PubMed ID: 25531301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular simulation of cooperative hydrodynamic effects in motion of a periodic array of spheres between parallel walls.
    Kohale SC; Khare R
    J Chem Phys; 2008 Oct; 129(16):164706. PubMed ID: 19045297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamic Interactions and Mean Settling Velocity of Porous Particles in a Dilute Suspension.
    Chen SB; Cai A
    J Colloid Interface Sci; 1999 Sep; 217(2):328-340. PubMed ID: 10469541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advective flow of permeable sphere in an electrical field.
    Yang Z; Lee DJ; Liu T
    J Colloid Interface Sci; 2010 Apr; 344(1):214-20. PubMed ID: 20070970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential transform semi-numerical analysis of biofluid-particle suspension flow and heat transfer in non-Darcian porous media.
    Bég TA; Rashidi MM; Bég OA; Rahimzadeh N
    Comput Methods Biomech Biomed Engin; 2013; 16(8):896-907. PubMed ID: 22397641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motion of a sphere through a polymer solution.
    Fan TH; Dhont JK; Tuinier R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011803. PubMed ID: 17358176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directed motion of spheres induced by unbiased driving forces in viscous fluids beyond the Stokes' law regime.
    Casado-Pascual J
    Phys Rev E; 2018 Mar; 97(3-1):032219. PubMed ID: 29776079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laminar flow drag reduction on soft porous media.
    Mirbod P; Wu Z; Ahmadi G
    Sci Rep; 2017 Dec; 7(1):17263. PubMed ID: 29222460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internal and External Flow over Laser-Textured Superhydrophobic Polytetrafluoroethylene (PTFE).
    Ahmmed KM; Patience C; Kietzig AM
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27411-27419. PubMed ID: 27649381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drag force acting on a neuromast in the fish lateral line trunk canal. II. Analytical modelling of parameter dependencies.
    Humphrey JA
    J R Soc Interface; 2009 Jul; 6(36):641-53. PubMed ID: 18926966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Settling slip velocity of a spherical particle in an unbounded micropolar fluid.
    El-Sapa S
    Eur Phys J E Soft Matter; 2019 Mar; 42(3):32. PubMed ID: 30879156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the permeability on the interaction between two spheres oscillating through Stokes-Brinkmann medium.
    Albalawi W; Taha HH; El-Sapa S
    Heliyon; 2023 Mar; 9(3):e14396. PubMed ID: 36950582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow Behavior of Nanoparticle Agglomerates in a Fluidized Bed Simulated with Porous-Structure-Based Drag Laws.
    Wang S; Hu X; Liu N; Liu H
    Nanomaterials (Basel); 2024 Jun; 14(12):. PubMed ID: 38921933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rotation due to hydrodynamic interactions between two spheres in contact.
    Ekiel-Jezewska ML; Lecoq N; Anthore R; Bostel F; Feuillebois F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051504. PubMed ID: 12513491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.