These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 33991258)

  • 21. Sedimentation Velocity and Potential in a Dilute Suspension of Charged Composite Spheres.
    Keh HJ; Liu YC
    J Colloid Interface Sci; 1997 Nov; 195(1):169-91. PubMed ID: 9441618
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phenomenological model of propagation of the elastic waves in a fluid-saturated porous solid with nonzero boundary slip velocity.
    Tsiklauri D
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):843-9. PubMed ID: 12243170
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Porous agglomerates in the general linear flow field.
    Vainshtein P; Shapiro M
    J Colloid Interface Sci; 2006 Jun; 298(1):183-91. PubMed ID: 16386267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-frequency viscosity of concentrated porous particles suspensions.
    Abade GC; Cichocki B; Ekiel-Jezewska ML; Nägele G; Wajnryb E
    J Chem Phys; 2010 Aug; 133(8):084906. PubMed ID: 20815593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pore-scale statistics of flow and transport through porous media.
    Aramideh S; Vlachos PP; Ardekani AM
    Phys Rev E; 2018 Jul; 98(1-1):013104. PubMed ID: 30110739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Semi-computational simulation of magneto-hemodynamic flow in a semi-porous channel using optimal homotopy and differential transform methods.
    Basiri Parsa A; Rashidi MM; Anwar Bég O; Sadri SM
    Comput Biol Med; 2013 Sep; 43(9):1142-53. PubMed ID: 23930807
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Velocity relaxation of a porous sphere immersed in a viscous incompressible fluid.
    Felderhof BU
    J Chem Phys; 2014 Apr; 140(13):134901. PubMed ID: 24712810
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Relative Magnetic Field, Chemical Reaction, Heat Generation and Newtonian Heating on Convection Flow of Casson Fluid over a Moving Vertical Plate Embedded in a Porous Medium.
    Khan D; Khan A; Khan I; Ali F; Karim FU; Tlili I
    Sci Rep; 2019 Jan; 9(1):400. PubMed ID: 30674923
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transient electrophoresis of a charged porous particle.
    Lai YC; Keh HJ
    Electrophoresis; 2020 Feb; 41(3-4):259-265. PubMed ID: 31889317
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Porosity effects in laminar fluid flow near permeable surfaces.
    Kang C; Mirbod P
    Phys Rev E; 2019 Jul; 100(1-1):013109. PubMed ID: 31499854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of surface charge on the boundary slip of various oleophilic/phobic surfaces immersed in liquids.
    Li Y; Bhushan B
    Soft Matter; 2015 Oct; 11(38):7680-95. PubMed ID: 26303742
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell model calculations of dynamic drag parameters in packings of spheres.
    Umnova O; Attenborough K; Li KM
    J Acoust Soc Am; 2000 Jun; 107(6):3113-9. PubMed ID: 10875357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrodynamics beyond Navier-Stokes: the slip flow model.
    Yudistiawan WP; Ansumali S; Karlin IV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016705. PubMed ID: 18764079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Separation of latex spheres using dielectrophoresis and fluid flow.
    Malnar B; Malyan B; Balachandran W; Cecelja F
    IEE Proc Nanobiotechnol; 2003 Nov; 150(2):66-9. PubMed ID: 16468933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diffusiophoretically induced interactions between chemically active and inert particles.
    Reigh SY; Chuphal P; Thakur S; Kapral R
    Soft Matter; 2018 Jul; 14(29):6043-6057. PubMed ID: 29978883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantification of surface charge density and its effect on boundary slip.
    Jing D; Bhushan B
    Langmuir; 2013 Jun; 29(23):6953-63. PubMed ID: 23683055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrodynamics of Particles at an Oil-Water Interface.
    Dani A; Keiser G; Yeganeh M; Maldarelli C
    Langmuir; 2015 Dec; 31(49):13290-302. PubMed ID: 26488685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lattice-Boltzmann simulations of the drag force on a sphere approaching a superhydrophobic striped plane.
    Dubov AL; Schmieschek S; Asmolov ES; Harting J; Vinogradova OI
    J Chem Phys; 2014 Jan; 140(3):034707. PubMed ID: 25669407
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From local to hydrodynamic friction in Brownian motion: A multiparticle collision dynamics simulation study.
    Theers M; Westphal E; Gompper G; Winkler RG
    Phys Rev E; 2016 Mar; 93(3):032604. PubMed ID: 27078411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical investigation of the vertical plunging force of a spherical intruder into a prefluidized granular bed.
    Xu Y; Padding JT; Kuipers JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062203. PubMed ID: 25615081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.