These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 33991384)
1. Kirkendall Effect Boosts Phosphorylated nZVI for Efficient Heavy Metal Wastewater Treatment. Li M; Shang H; Li H; Hong Y; Ling C; Wei K; Zhou B; Mao C; Ai Z; Zhang L Angew Chem Int Ed Engl; 2021 Jul; 60(31):17115-17122. PubMed ID: 33991384 [TBL] [Abstract][Full Text] [Related]
2. Enhanced removal performance of zero-valent iron towards heavy metal ions by assembling Fe-tannin coating. Feng J; Lang G; Li T; Zhang J; Li T; Jiang Z J Environ Manage; 2022 Oct; 319():115619. PubMed ID: 35810583 [TBL] [Abstract][Full Text] [Related]
3. Enhanced chitosan beads-supported Fe(0)-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers. Liu T; Yang X; Wang ZL; Yan X Water Res; 2013 Nov; 47(17):6691-700. PubMed ID: 24075723 [TBL] [Abstract][Full Text] [Related]
4. Facile synthesis of economical feasible fly ash-based zeolite-supported nano zerovalent iron and nickel bimetallic composite for the potential removal of heavy metals from industrial effluents. Angaru GKR; Choi YL; Lingamdinne LP; Choi JS; Kim DS; Koduru JR; Yang JK; Chang YY Chemosphere; 2021 Mar; 267():128889. PubMed ID: 33187656 [TBL] [Abstract][Full Text] [Related]
5. Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI) particles. Huang P; Ye Z; Xie W; Chen Q; Li J; Xu Z; Yao M Water Res; 2013 Aug; 47(12):4050-8. PubMed ID: 23566331 [TBL] [Abstract][Full Text] [Related]
6. Effects of environmental factors on the removal of heavy metals by sulfide-modified nanoscale zerovalent iron. Xu W; Hu X; Lou Y; Jiang X; Shi K; Tong Y; Xu X; Shen C; Hu B; Lou L Environ Res; 2020 Aug; 187():109662. PubMed ID: 32460094 [TBL] [Abstract][Full Text] [Related]
7. Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater. Sun Y; Lei C; Khan E; Chen SS; Tsang DCW; Ok YS; Lin D; Feng Y; Li XD Chemosphere; 2017 Jun; 176():315-323. PubMed ID: 28273539 [TBL] [Abstract][Full Text] [Related]
8. Ferrate(VI)-prompted removal of metals in aqueous media: mechanistic delineation of enhanced efficiency via metal entrenchment in magnetic oxides. Prucek R; Tuček J; Kolařík J; Hušková I; Filip J; Varma RS; Sharma VK; Zbořil R Environ Sci Technol; 2015 Feb; 49(4):2319-27. PubMed ID: 25607569 [TBL] [Abstract][Full Text] [Related]
9. Removal of Heavy Metals and Metalloids by Amino-Modified Biochar Supporting Nanoscale Zero-Valent Iron. Yang J; Ma T; Li X; Tu J; Dang Z; Yang C J Environ Qual; 2018 Sep; 47(5):1196-1204. PubMed ID: 30272773 [TBL] [Abstract][Full Text] [Related]
10. Oxyanion-modified zero valent iron with excellent pollutant removal performance. Gong L; Zhang L Chem Commun (Camb); 2023 Feb; 59(15):2081-2089. PubMed ID: 36723230 [TBL] [Abstract][Full Text] [Related]
11. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Shi LN; Zhang X; Chen ZL Water Res; 2011 Jan; 45(2):886-92. PubMed ID: 20950833 [TBL] [Abstract][Full Text] [Related]
12. Heavy metal release due to aging effect during zero valent iron nanoparticles remediation. Calderon B; Fullana A Water Res; 2015 Oct; 83():1-9. PubMed ID: 26115512 [TBL] [Abstract][Full Text] [Related]
13. Removal of heavy metal ions and polybrominated biphenyl ethers by sulfurized nanoscale zerovalent iron: Compound effects and removal mechanism. Wei X; Guo Z; Yin H; Yuan Y; Chen R; Lu G; Dang Z J Hazard Mater; 2021 Jul; 414():125555. PubMed ID: 33684814 [TBL] [Abstract][Full Text] [Related]
14. Mapping the Reactions in a Single Zero-Valent Iron Nanoparticle. Ling L; Huang X; Li M; Zhang WX Environ Sci Technol; 2017 Dec; 51(24):14293-14300. PubMed ID: 29149555 [TBL] [Abstract][Full Text] [Related]
15. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application. Li S; Wang W; Liang F; Zhang WX J Hazard Mater; 2017 Jan; 322(Pt A):163-171. PubMed ID: 26861641 [TBL] [Abstract][Full Text] [Related]
16. Surface wettability control and electron transport regulation in zerovalent iron for enhanced removal of emerging polystyrene microplastics-heavy metal contaminants. Zhang Y; Fu H; Chen X; Shi S; Liu N; Tang C; Hu X Water Res; 2024 Jun; 256():121602. PubMed ID: 38621315 [TBL] [Abstract][Full Text] [Related]
17. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Fu R; Yang Y; Xu Z; Zhang X; Guo X; Bi D Chemosphere; 2015 Nov; 138():726-34. PubMed ID: 26267258 [TBL] [Abstract][Full Text] [Related]
18. Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions: A Review. Zou Y; Wang X; Khan A; Wang P; Liu Y; Alsaedi A; Hayat T; Wang X Environ Sci Technol; 2016 Jul; 50(14):7290-304. PubMed ID: 27331413 [TBL] [Abstract][Full Text] [Related]
19. Enhanced removal of Ni(II) by nanoscale zero valent iron supported on Na-saturated bentonite. Li Z; Dong H; Zhang Y; Li J; Li Y J Colloid Interface Sci; 2017 Jul; 497():43-49. PubMed ID: 28260674 [TBL] [Abstract][Full Text] [Related]
20. Interaction between pollutants during the removal of polychlorinated biphenyl-heavy metal combined pollution by modified nanoscale zero-valent iron. Lou Y; Cai Y; Tong Y; Hsieh L; Li X; Xu W; Shi K; Shen C; Xu X; Lou L Sci Total Environ; 2019 Jul; 673():120-127. PubMed ID: 30981919 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]