BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 33991713)

  • 1. Eye movements and the perceived location of phosphenes generated by intracranial primary visual cortex stimulation in the blind.
    Caspi A; Barry MP; Patel UK; Salas MA; Dorn JD; Roy A; Niketeghad S; Greenberg RJ; Pouratian N
    Brain Stimul; 2021; 14(4):851-860. PubMed ID: 33991713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eye movements as a marker for visual prosthesis spatial mapping - A feasibility study using a blind patient implanted with the Argus II retinal prosthesis.
    Caspi A; Dorn J; Helder JB; Katyal KD; Roy A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5443-5446. PubMed ID: 28269489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex.
    Schmidt EM; Bak MJ; Hambrecht FT; Kufta CV; O'Rourke DK; Vallabhanath P
    Brain; 1996 Apr; 119 ( Pt 2)():507-22. PubMed ID: 8800945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical Stimulation of Visual Cortex: Relevance for the Development of Visual Cortical Prosthetics.
    Bosking WH; Beauchamp MS; Yoshor D
    Annu Rev Vis Sci; 2017 Sep; 3():141-166. PubMed ID: 28753382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinotopic to Spatiotopic Mapping in Blind Patients Implanted With the Argus II Retinal Prosthesis.
    Caspi A; Roy A; Dorn JD; Greenberg RJ
    Invest Ophthalmol Vis Sci; 2017 Jan; 58(1):119-127. PubMed ID: 28114567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating Phosphene Locations Using Eye Movements of Suprachoroidal Retinal Prosthesis Users.
    Titchener SA; Goossens J; Kvansakul J; Nayagam DAX; Kolic M; Baglin EK; Ayton LN; Abbott CJ; Luu CD; Barnes N; Kentler WG; Shivdasani MN; Allen PJ; Petoe MA
    Transl Vis Sci Technol; 2023 Mar; 12(3):20. PubMed ID: 36943168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphene perceptions and safety of chronic visual cortex stimulation in a blind subject.
    Niketeghad S; Muralidharan A; Patel U; Dorn JD; Bonelli L; Greenberg RJ; Pouratian N
    J Neurosurg; 2019 May; 132(6):2000-2007. PubMed ID: 31151104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.
    Bosking WH; Sun P; Ozker M; Pei X; Foster BL; Beauchamp MS; Yoshor D
    J Neurosci; 2017 Jul; 37(30):7188-7197. PubMed ID: 28652411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-electrode stimulation evokes consistent spatial patterns of phosphenes and improves phosphene mapping in blind subjects.
    Oswalt D; Bosking W; Sun P; Sheth SA; Niketeghad S; Salas MA; Patel U; Greenberg R; Dorn J; Pouratian N; Beauchamp M; Yoshor D
    Brain Stimul; 2021; 14(5):1356-1372. PubMed ID: 34482000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual percepts evoked with an intracortical 96-channel microelectrode array inserted in human occipital cortex.
    Fernández E; Alfaro A; Soto-Sánchez C; Gonzalez-Lopez P; Lozano AM; Peña S; Grima MD; Rodil A; Gómez B; Chen X; Roelfsema PR; Rolston JD; Davis TS; Normann RA
    J Clin Invest; 2021 Dec; 131(23):. PubMed ID: 34665780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind.
    Dobelle WH; Mladejovsky MG
    J Physiol; 1974 Dec; 243(2):553-76. PubMed ID: 4449074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Stimulation of Visual Cortex Produces Form Vision in Sighted and Blind Humans.
    Beauchamp MS; Oswalt D; Sun P; Foster BL; Magnotti JF; Niketeghad S; Pouratian N; Bosking WH; Yoshor D
    Cell; 2020 May; 181(4):774-783.e5. PubMed ID: 32413298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex.
    Chen X; Wang F; Fernandez E; Roelfsema PR
    Science; 2020 Dec; 370(6521):1191-1196. PubMed ID: 33273097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Percepts evoked by multi-electrode stimulation of human visual cortex.
    Bosking WH; Oswalt DN; Foster BL; Sun P; Beauchamp MS; Yoshor D
    Brain Stimul; 2022; 15(5):1163-1177. PubMed ID: 35985472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstimulation of visual cortex to restore vision.
    Tehovnik EJ; Slocum WM; Smirnakis SM; Tolias AS
    Prog Brain Res; 2009; 175():347-75. PubMed ID: 19660667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restoring Color Perception to the Blind: An Electrical Stimulation Strategy of Retina in Patients with End-stage Retinitis Pigmentosa.
    Yue L; Castillo J; Gonzalez AC; Neitz J; Humayun MS
    Ophthalmology; 2021 Mar; 128(3):453-462. PubMed ID: 32858064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic stimuli applied over motor and visual cortex: influence of coil position and field polarity on motor responses, phosphenes, and eye movements.
    Meyer BU; Diehl R; Steinmetz H; Britton TC; Benecke R
    Electroencephalogr Clin Neurophysiol Suppl; 1991; 43():121-34. PubMed ID: 1773752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphene induction by microstimulation of macaque V1.
    Tehovnik EJ; Slocum WM
    Brain Res Rev; 2007 Feb; 53(2):337-43. PubMed ID: 17173976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation.
    Gothe J; Brandt SA; Irlbacher K; Röricht S; Sabel BA; Meyer BU
    Brain; 2002 Mar; 125(Pt 3):479-90. PubMed ID: 11872606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of synchronous versus asynchronous electrical stimulation in artificial vision.
    Moleirinho S; Whalen AJ; Fried SI; Pezaris JS
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33900206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.