BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33992016)

  • 21. Poly(amide-imide)/silica supported PEI hollow fiber sorbents for postcombustion CO(2) capture by RTSA.
    Labreche Y; Fan Y; Rezaei F; Lively RP; Jones CW; Koros WJ
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19336-46. PubMed ID: 25275334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CO
    Shakoor A; Khan AL; Akhter P; Aslam M; Bilad MR; Maafa IM; Moustakas K; Nizami AS; Hussain M
    Environ Sci Pollut Res Int; 2021 Mar; 28(10):12397-12405. PubMed ID: 32651793
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal-organic frameworks.
    Xin Q; Ouyang J; Liu T; Li Z; Li Z; Liu Y; Wang S; Wu H; Jiang Z; Cao X
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1065-77. PubMed ID: 25525969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of plasma resistant hollow fiber membranes for artificial lungs.
    Eash HJ; Jones HM; Hattler BG; Federspiel WJ
    ASAIO J; 2004; 50(5):491-7. PubMed ID: 15497391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermodynamic Modeling of Gas Transport in Glassy Polymeric Membranes.
    Minelli M; Sarti GC
    Membranes (Basel); 2017 Aug; 7(3):. PubMed ID: 28825619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling the Effects of Interfacial Characteristics on Gas Permeation Behavior of Nanotube-Mixed Matrix Membranes.
    Chehrazi E; Sharif A; Omidkhah M; Karimi M
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37321-37331. PubMed ID: 28985055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNT) as filler for gas separation: experimental.
    Hashemifard SA; Ismail AF; Matsuura T
    J Colloid Interface Sci; 2011 Jul; 359(2):359-70. PubMed ID: 21529819
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pre-treatment of multi-walled carbon nanotubes for polyetherimide mixed matrix hollow fiber membranes.
    Goh PS; Ng BC; Ismail AF; Aziz M; Hayashi Y
    J Colloid Interface Sci; 2012 Nov; 386(1):80-7. PubMed ID: 22909959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of Filler Porosity and Filler/Polymer Interface Volume in Metal-Organic Framework/Polymer Mixed-Matrix Membranes for Gas Separation.
    Nuhnen A; Dietrich D; Millan S; Janiak C
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33589-33600. PubMed ID: 30193060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mixed-Matrix Membranes Containing Carbon Nanotubes Composite with Hydrogel for Efficient CO
    Zhang H; Guo R; Hou J; Wei Z; Li X
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):29044-29051. PubMed ID: 27723300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of nanocomposite membranes containing modified Si nanoparticles in PEBAX-2533 as a block copolymer and 6FDA-durene diamine as a glassy polymer.
    Nafisi V; Hägg MB
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15643-52. PubMed ID: 25158027
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancing the Separation Performance of Glassy PPO with the Addition of a Molecular Sieve (ZIF-8): Gas Transport at Various Temperatures.
    Benedetti FM; De Angelis MG; Esposti MD; Fabbri P; Masili A; Orsini A; Pettinau A
    Membranes (Basel); 2020 Mar; 10(4):. PubMed ID: 32230906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiparameter Neural Network Modeling of Facilitated Transport Mixed Matrix Membranes for Carbon Dioxide Removal.
    Nasir R; Suleman H; Maqsood K
    Membranes (Basel); 2022 Apr; 12(4):. PubMed ID: 35448392
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pervaporative separation of bioethanol using a polydimethylsiloxane/polyetherimide composite hollow-fiber membrane.
    Lee HJ; Cho EJ; Kim YG; Choi IS; Bae HJ
    Bioresour Technol; 2012 Apr; 109():110-5. PubMed ID: 22310211
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellulose acetate-based membranes by interfacial engineering and integration of ZIF-62 glass nanoparticles for CO
    Mubashir M; Dumée LF; Fong YY; Jusoh N; Lukose J; Chai WS; Show PL
    J Hazard Mater; 2021 Aug; 415():125639. PubMed ID: 33740720
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving the Selectivity of ZIF-8/Polysulfone-Mixed Matrix Membranes by Polydopamine Modification for H
    Mei X; Yang S; Lu P; Zhang Y; Zhang J
    Front Chem; 2020; 8():528. PubMed ID: 32754574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Appealing sheath-core spun high-performance composite carbon molecular sieve membranes.
    Cao Y; Liu Z; Qiu W; Koros WJ
    Angew Chem Int Ed Engl; 2023 Jul; 62(27):e202303915. PubMed ID: 37162173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mixed-Matrix Membranes Based on Polyetherimide, Metal-Organic Framework and Ionic Liquid: Influence of the Composition and Morphology on Gas Transport Properties.
    Zid S; Alcouffe P; Zinet M; Espuche E
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-supported fibrous porous aromatic membranes for efficient CO2/N2 separations.
    Meng L; Zou X; Guo S; Ma H; Zhao Y; Zhu G
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15561-9. PubMed ID: 26120972
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gas Transport in Glassy Polymers: Prediction of Diffusional Time Lag.
    Minelli M; Sarti GC
    Membranes (Basel); 2018 Feb; 8(1):. PubMed ID: 29401689
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.