BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 33992077)

  • 1. Identifying collateral and synthetic lethal vulnerabilities within the DNA-damage response.
    Pinoli P; Srihari S; Wong L; Ceri S
    BMC Bioinformatics; 2021 May; 22(1):250. PubMed ID: 33992077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using graph-based model to identify cell specific synthetic lethal effects.
    Pu M; Cheng K; Li X; Xin Y; Wei L; Jin S; Zheng W; Peng G; Tang Q; Zhou J; Zhang Y
    Comput Struct Biotechnol J; 2023; 21():5099-5110. PubMed ID: 37920819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic Lethality Screening with Recursive Feature Machines.
    Cai C; Radhakrishnan A; Uhler C
    bioRxiv; 2023 Dec; ():. PubMed ID: 38106093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SL-scan identifies synthetic lethal interactions in cancer using metabolic networks.
    Zangene E; Marashi SA; Montazeri H
    Sci Rep; 2023 Sep; 13(1):15763. PubMed ID: 37737478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncovering cancer vulnerabilities by machine learning prediction of synthetic lethality.
    Benfatto S; Serçin Ö; Dejure FR; Abdollahi A; Zenke FT; Mardin BR
    Mol Cancer; 2021 Aug; 20(1):111. PubMed ID: 34454516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ELISL: early-late integrated synthetic lethality prediction in cancer.
    Tepeli YI; Seale C; Gonçalves JP
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38113447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leveraging synthetic lethality to uncover potential therapeutic target in gastric cancer.
    Geng H; Qian R; Zhong Y; Tang X; Zhang X; Zhang L; Yang C; Li T; Dong Z; Wang C; Zhang Z; Zhu C
    Cancer Gene Ther; 2024 Feb; 31(2):334-348. PubMed ID: 38040871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KR4SL: knowledge graph reasoning for explainable prediction of synthetic lethality.
    Zhang K; Wu M; Liu Y; Feng Y; Zheng J
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i158-i167. PubMed ID: 37387166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SLKB: synthetic lethality knowledge base.
    Gökbağ B; Tang S; Fan K; Cheng L; Yu L; Zhao Y; Li L
    Nucleic Acids Res; 2024 Jan; 52(D1):D1418-D1428. PubMed ID: 37889037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ASTER: A Method to Predict Clinically Relevant Synthetic Lethal Genetic Interactions.
    Liany H; Jayagopal A; Huang D; Lim JQ; Nbh NI; Jeyasekharan A; Ong CK; Rajan V
    IEEE J Biomed Health Inform; 2024 Mar; 28(3):1785-1796. PubMed ID: 38227408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast mutual exclusivity algorithm nominates potential synthetic lethal gene pairs through brute force matrix product computations.
    Fedrizzi T; Ciani Y; Lorenzin F; Cantore T; Gasperini P; Demichelis F
    Comput Struct Biotechnol J; 2021; 19():4394-4403. PubMed ID: 34429855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paralog-based synthetic lethality: rationales and applications.
    Xin Y; Zhang Y
    Front Oncol; 2023; 13():1168143. PubMed ID: 37350942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network targeting combination therapy of synthetic lethal vulnerabilities in
    Castro MP; Dittmar K
    Neurooncol Adv; 2024; 6(1):vdad162. PubMed ID: 38187871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lethal phenotypes in Mendelian disorders.
    Cacheiro P; Lawson S; Van den Veyver IB; Marengo G; Zocche D; Murray SA; Duyzend M; Robinson PN; Smedley D
    Genet Med; 2024 Apr; 26(7):101141. PubMed ID: 38629401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a RAD52 Inhibitor Inducing Synthetic Lethality in BRCA2-Deficient Cancer Cells.
    Yang Q; Li Y; Sun R; Li J
    Front Pharmacol; 2021; 12():637825. PubMed ID: 33995041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting IDH1/2 mutant cancers with combinations of ATR and PARP inhibitors.
    Sule A; Van Doorn J; Sundaram RK; Ganesa S; Vasquez JC; Bindra RS
    NAR Cancer; 2021 Jun; 3(2):zcab018. PubMed ID: 34027408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SynLeGG: analysis and visualization of multiomics data for discovery of cancer 'Achilles Heels' and gene function relationships.
    Wappett M; Harris A; Lubbock ALR; Lobb I; McDade S; Overton IM
    Nucleic Acids Res; 2021 Jul; 49(W1):W613-W618. PubMed ID: 33997893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DDRugging glioblastoma: understanding and targeting the DNA damage response to improve future therapies.
    Rominiyi O; Collis SJ
    Mol Oncol; 2022 Jan; 16(1):11-41. PubMed ID: 34036721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-occurrence and mutual exclusivity: what cross-cancer mutation patterns can tell us.
    El Tekle G; Bernasocchi T; Unni AM; Bertoni F; Rossi D; Rubin MA; Theurillat JP
    Trends Cancer; 2021 Sep; 7(9):823-836. PubMed ID: 34031014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of homologous recombination deficiency testing in ovarian cancer and its clinical implications: do we need it?
    Ngoi NYL; Tan DSP
    ESMO Open; 2021 Jun; 6(3):100144. PubMed ID: 34015643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.