These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 33992215)
61. Electrochemical Sensing of Lead in Drinking Water Using Copper Foil Bonded with Polymer. Redhwan TZ; Ali Y; Howlader MMR; Haddara YM Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772462 [TBL] [Abstract][Full Text] [Related]
62. An electrochemical aptasensor based on gold@polypyrrole composites for detection of lead ions. Ding J; Liu Y; Zhang D; Yu M; Zhan X; Zhang D; Zhou P Mikrochim Acta; 2018 Nov; 185(12):545. PubMed ID: 30426282 [TBL] [Abstract][Full Text] [Related]
63. Electrochemical microfluidic chip based on molecular imprinting technique applied for therapeutic drug monitoring. Liu J; Zhang Y; Jiang M; Tian L; Sun S; Zhao N; Zhao F; Li Y Biosens Bioelectron; 2017 May; 91():714-720. PubMed ID: 28126661 [TBL] [Abstract][Full Text] [Related]
64. Biomass derived worm-like nitrogen-doped-carbon framework for trace determination of toxic heavy metal lead (II). Xu C; Liu J; Bi Y; Ma C; Bai J; Hu Z; Zhou M Anal Chim Acta; 2020 Jun; 1116():16-26. PubMed ID: 32389185 [TBL] [Abstract][Full Text] [Related]
65. Platinum electrode coated with a bentonite-carbon composite as an environmental sensor for detection of lead. Abbaspour A; Izadyar A Anal Bioanal Chem; 2006 Nov; 386(5):1559-65. PubMed ID: 16983532 [TBL] [Abstract][Full Text] [Related]
66. 3D origami electrochemical device for sensitive Pb Wang X; Yang C; Zhu S; Yan M; Ge S; Yu J Biosens Bioelectron; 2017 Jan; 87():108-115. PubMed ID: 27522484 [TBL] [Abstract][Full Text] [Related]
67. Comparison of backing materials of screen printed electrochemical sensors for direct determination of the sub-nanomolar concentration of lead in seawater. Molinero-Abad B; Izquierdo D; Pérez L; Escudero I; Arcos-Martínez MJ Talanta; 2018 May; 182():549-557. PubMed ID: 29501191 [TBL] [Abstract][Full Text] [Related]
68. Electrochemical DNAzyme sensor for lead based on amplification of DNA-Au bio-bar codes. Shen L; Chen Z; Li Y; He S; Xie S; Xu X; Liang Z; Meng X; Li Q; Zhu Z; Li M; Le XC; Shao Y Anal Chem; 2008 Aug; 80(16):6323-8. PubMed ID: 18627134 [TBL] [Abstract][Full Text] [Related]
69. Two-Channel Graphene pH Sensor Using Semi-Ionic Fluorinated Graphene Reference Electrode. Kim DH; Park WH; Oh HG; Jeon DC; Lim JM; Song KS Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32731474 [TBL] [Abstract][Full Text] [Related]
70. Wireless Microfluidic Sensor for Metal Ion Detection in Water. Liang Y; Ma M; Zhang F; Liu F; Lu T; Liu Z; Li Y ACS Omega; 2021 Apr; 6(13):9302-9309. PubMed ID: 33842799 [TBL] [Abstract][Full Text] [Related]
71. Highly sensitive and reproducible cyclodextrin-modified gold electrodes for probing trace lead in blood. Li W; Jin G; Chen H; Kong J Talanta; 2009 May; 78(3):717-22. PubMed ID: 19269418 [TBL] [Abstract][Full Text] [Related]
72. A Novel Bismuth-Chitosan Nanocomposite Sensor for Simultaneous Detection of Pb(II), Cd(II) and Zn(II) in Wastewater. Hwang JH; Pathak P; Wang X; Rodriguez KL; Cho HJ; Lee WH Micromachines (Basel); 2019 Jul; 10(8):. PubMed ID: 31370277 [TBL] [Abstract][Full Text] [Related]
73. Voltammetric Determination of Pb(II) by a Ca-MOF-Modified Carbon Paste Electrode Integrated in a 3D-Printed Device. Vlachou E; Margariti A; Papaefstathiou GS; Kokkinos C Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784856 [TBL] [Abstract][Full Text] [Related]
74. Application of Ag/AgCl Sensor for Chloride Monitoring of Mortar under Dry-Wet Cycles. Tian Y; Zhang P; Zhao K; Du Z; Zhao T Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32143333 [TBL] [Abstract][Full Text] [Related]
75. Optofluidics-based DNA structure-competitive aptasensor for rapid on-site detection of lead(II) in an aquatic environment. Long F; Zhu A; Wang H Anal Chim Acta; 2014 Nov; 849():43-9. PubMed ID: 25300216 [TBL] [Abstract][Full Text] [Related]
76. A three-electrode integrated electrochemical platform based on nanoporous gold for the simultaneous determination of hydroquinone and catechol with high selectivity. Wu F; Zhao J; Han D; Zhao S; Zhu R; Cui G Analyst; 2021 Jan; 146(1):232-243. PubMed ID: 33104132 [TBL] [Abstract][Full Text] [Related]
77. Preparation of Pb(II) Ion Imprinted Polymer and Its Application as the Interface of an Electrochemical Sensor for Trace Lead Determination. Hu S; Xiong X; Huang S; Lai X Anal Sci; 2016; 32(9):975-80. PubMed ID: 27682403 [TBL] [Abstract][Full Text] [Related]
78. Facile Design of Phase Separation for Microfluidic Droplet-Based Liquid Phase Microextraction as a Front End to Electrothermal Vaporization-ICPMS for the Analysis of Trace Metals in Cells. Yu X; Chen B; He M; Wang H; Tian S; Hu B Anal Chem; 2018 Aug; 90(16):10078-10086. PubMed ID: 30039697 [TBL] [Abstract][Full Text] [Related]
79. Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles. Yantasee W; Hongsirikarn K; Warner CL; Choi D; Sangvanich T; Toloczko MB; Warner MG; Fryxell GE; Addleman RS; Timchalk C Analyst; 2008 Mar; 133(3):348-55. PubMed ID: 18299749 [TBL] [Abstract][Full Text] [Related]
80. A novel Au-Ag-Pt three-electrode microchip sensing platform for chromium(VI) determination. Li D; Li J; Jia X; Xia Y; Zhang X; Wang E Anal Chim Acta; 2013 Dec; 804():98-103. PubMed ID: 24267069 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]