BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33992531)

  • 1. Hi-C as a molecular rangefinder to examine genomic rearrangements.
    Kim K; Kim M; Kim Y; Lee D; Jung I
    Semin Cell Dev Biol; 2022 Jan; 121():161-170. PubMed ID: 33992531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Hi-C Data for Discovery of Structural Variations in Cancer.
    Song F; Xu J; Dixon J; Yue F
    Methods Mol Biol; 2022; 2301():143-161. PubMed ID: 34415534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Analysis of Hi-C Data.
    Forcato M; Bicciato S
    Methods Mol Biol; 2021; 2157():103-125. PubMed ID: 32820401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Interplay between Structural Variations and 3D Genome Organization in Pancreatic Cancer.
    Du Y; Gu Z; Li Z; Yuan Z; Zhao Y; Zheng X; Bo X; Chen H; Wang C
    Adv Sci (Weinh); 2022 Jun; 9(18):e2200818. PubMed ID: 35570408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering Hi-C: from 3D genome to function.
    Kong S; Zhang Y
    Cell Biol Toxicol; 2019 Feb; 35(1):15-32. PubMed ID: 30610495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting Spatial Chromatin Organization by Chromosome Conformation Capture II: Genome-Wide Profiling by Hi-C.
    Vietri Rudan M; Hadjur S; Sexton T
    Methods Mol Biol; 2017; 1589():47-74. PubMed ID: 26900130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of copy number variations and translocations in cancer cells from Hi-C data.
    Chakraborty A; Ay F
    Bioinformatics; 2018 Jan; 34(2):338-345. PubMed ID: 29048467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3DIV update for 2021: a comprehensive resource of 3D genome and 3D cancer genome.
    Kim K; Jang I; Kim M; Choi J; Kim MS; Lee B; Jung I
    Nucleic Acids Res; 2021 Jan; 49(D1):D38-D46. PubMed ID: 33245777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D disorganization and rearrangement of genome provide insights into pathogenesis of NAFLD by integrated Hi-C, Nanopore, and RNA sequencing.
    Xu L; Yin L; Qi Y; Tan X; Gao M; Peng J
    Acta Pharm Sin B; 2021 Oct; 11(10):3150-3164. PubMed ID: 34729306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Processing and Quality Control of Hi-C, Capture Hi-C and Capture-C Data.
    Hansen P; Gargano M; Hecht J; Ibn-Salem J; Karlebach G; Roehr JT; Robinson PN
    Genes (Basel); 2019 Jul; 10(7):. PubMed ID: 31323892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant In Situ Hi-C Experimental Protocol and Bioinformatic Analysis.
    Pérez-de Los Santos FJ; Sotelo-Fonseca JE; Ramírez-Colmenero A; Nützmann HW; Fernandez-Valverde SL; Oktaba K
    Methods Mol Biol; 2022; 2512():217-247. PubMed ID: 35818008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines.
    Khalil AIS; Muzaki SRBM; Chattopadhyay A; Sanyal A
    BMC Bioinformatics; 2020 Nov; 21(1):506. PubMed ID: 33160308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational methods for predicting 3D genomic organization from high-resolution chromosome conformation capture data.
    MacKay K; Kusalik A
    Brief Funct Genomics; 2020 Jul; 19(4):292-308. PubMed ID: 32353112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell.
    Nagano T; Lubling Y; Yaffe E; Wingett SW; Dean W; Tanay A; Fraser P
    Nat Protoc; 2015 Dec; 10(12):1986-2003. PubMed ID: 26540590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural variant identification and characterization.
    Balachandran P; Beck CR
    Chromosome Res; 2020 Mar; 28(1):31-47. PubMed ID: 31907725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of 3D Chromatin Interactions Using Hi-C.
    Hu G
    Methods Mol Biol; 2020; 2117():65-78. PubMed ID: 31960372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifaceted Hi-C benchmarking: what makes a difference in chromosome-scale genome scaffolding?
    Kadota M; Nishimura O; Miura H; Tanaka K; Hiratani I; Kuraku S
    Gigascience; 2020 Jan; 9(1):. PubMed ID: 31919520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practical Analysis of Genome Contact Interaction Experiments.
    Carty MA; Elemento O
    Methods Mol Biol; 2016; 1418():177-89. PubMed ID: 27008015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hi-C Analysis to Identify Genome-Wide Chromatin Structural Aberration in Cancer.
    Okabe A; Kaneda A
    Methods Mol Biol; 2023; 2519():127-140. PubMed ID: 36066718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data.
    Carty M; Zamparo L; Sahin M; González A; Pelossof R; Elemento O; Leslie CS
    Nat Commun; 2017 May; 8():15454. PubMed ID: 28513628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.