These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33992836)

  • 1. All-polymeric transient neural probe for prolonged in-vivo electrophysiological recordings.
    Ferlauto L; Vagni P; Fanelli A; Zollinger EG; Monsorno K; Paolicelli RC; Ghezzi D
    Biomaterials; 2021 Jul; 274():120889. PubMed ID: 33992836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion.
    Lo MC; Wang S; Singh S; Damodaran VB; Kaplan HM; Kohn J; Shreiber DI; Zahn JD
    Biomed Microdevices; 2015 Apr; 17(2):34. PubMed ID: 25681971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introducing a biomimetic coating for graphene neuroelectronics: toward
    Bourrier A; Szarpak-Jankowska A; Veliev F; Olarte-Hernandez R; Shkorbatova P; Bonizzato M; Rey E; Barraud Q; Briançon-Marjollet A; Auzely R; Courtine G; Bouchiat V; Delacour C
    Biomed Phys Eng Express; 2020 Nov; 7(1):. PubMed ID: 35125348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the in vivo glial response to miniaturized parylene cortical probes coated with an ultra-fast degrading polymer to aid insertion.
    Lo MC; Wang S; Singh S; Damodaran VB; Ahmed I; Coffey K; Barker D; Saste K; Kals K; Kaplan HM; Kohn J; Shreiber DI; Zahn JD
    J Neural Eng; 2018 Jun; 15(3):036002. PubMed ID: 29485103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skin-Inspired Electronics: An Emerging Paradigm.
    Wang S; Oh JY; Xu J; Tran H; Bao Z
    Acc Chem Res; 2018 May; 51(5):1033-1045. PubMed ID: 29693379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 512-channels, whole array readout, CMOS implantable probe for acute recordings from the brain.
    Angotzi GN; Malerba M; Zucca S; Berdondini L
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():877-80. PubMed ID: 26736402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SiNAPS: An implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings.
    Angotzi GN; Boi F; Lecomte A; Miele E; Malerba M; Zucca S; Casile A; Berdondini L
    Biosens Bioelectron; 2019 Feb; 126():355-364. PubMed ID: 30466053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in Materials for Recent Low-Profile Implantable Bioelectronics.
    Chen Y; Kim YS; Tillman BW; Yeo WH; Chun Y
    Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29596359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo.
    Canales A; Jia X; Froriep UP; Koppes RA; Tringides CM; Selvidge J; Lu C; Hou C; Wei L; Fink Y; Anikeeva P
    Nat Biotechnol; 2015 Mar; 33(3):277-84. PubMed ID: 25599177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zwitterionic Porous Conjugated Polymers as a Versatile Platform for Antibiofouling Implantable Bioelectronics.
    Xu J; Xu J; Moon H; Sintim HO; Lee H
    ACS Appl Polym Mater; 2020 Feb; 2(2):528-536. PubMed ID: 32490375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical characterization of biodegradable implants.
    Claes LE
    Clin Mater; 1992; 10(1-2):41-6. PubMed ID: 10171202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Multisite Silicon Neural Probe with Integrated Flexible Connector for Interchangeable Packaging.
    Novais A; Calaza C; Fernandes J; Fonseca H; Monteiro P; Gaspar J; Jacinto L
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33917654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced Materials and Devices for Bioresorbable Electronics.
    Kang SK; Koo J; Lee YK; Rogers JA
    Acc Chem Res; 2018 May; 51(5):988-998. PubMed ID: 29664613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term stability of intracortical recordings using perforated and arrayed Parylene sheath electrodes.
    Hara SA; Kim BJ; Kuo JT; Lee CD; Meng E; Pikov V
    J Neural Eng; 2016 Dec; 13(6):066020. PubMed ID: 27819256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sterilization of implantable polymer-based medical devices: A review.
    Tipnis NP; Burgess DJ
    Int J Pharm; 2018 Jun; 544(2):455-460. PubMed ID: 29274370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies.
    Kozai TD; Jaquins-Gerstl AS; Vazquez AL; Michael AC; Cui XT
    ACS Chem Neurosci; 2015 Jan; 6(1):48-67. PubMed ID: 25546652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning from the brain's architecture: bioinspired strategies towards implantable neural interfaces.
    Rommelfanger NJ; Keck CH; Chen Y; Hong G
    Curr Opin Biotechnol; 2021 Dec; 72():8-12. PubMed ID: 34365114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatible Symmetric Na-Ion Microbatteries with Sphere-in-Network Heteronanomat Electrodes Realizing High Reliability and High Energy Density for Implantable Bioelectronics.
    Zhang G; Geng F; Zhao T; Zhou F; Zhang N; Zhang S; Deng C
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42268-42278. PubMed ID: 30457330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term recording performance and biocompatibility of chronically implanted cylindrically-shaped, polymer-based neural interfaces.
    Fiáth R; Hofer KT; Csikós V; Horváth D; Nánási T; Tóth K; Pothof F; Böhler C; Asplund M; Ruther P; Ulbert I
    Biomed Tech (Berl); 2018 Jun; 63(3):301-315. PubMed ID: 29478038
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.