These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 33993508)
1. Self-supervised learning for accelerated 3D high-resolution ultrasound imaging. Dai X; Lei Y; Wang T; Axente M; Xu D; Patel P; Jani AB; Curran WJ; Liu T; Yang X Med Phys; 2021 Jul; 48(7):3916-3926. PubMed ID: 33993508 [TBL] [Abstract][Full Text] [Related]
2. Improvement of 2D cine image quality using 3D priors and cycle generative adversarial network for low field MRI-guided radiation therapy. Dong Y; Yang F; Wen J; Cai J; Zeng F; Liu M; Li S; Wang J; Ford JC; Portelance L; Yang Y Med Phys; 2024 May; 51(5):3495-3509. PubMed ID: 38043123 [TBL] [Abstract][Full Text] [Related]
3. Synthesizing high-resolution magnetic resonance imaging using parallel cycle-consistent generative adversarial networks for fast magnetic resonance imaging. Xie H; Lei Y; Wang T; Roper J; Dhabaan AH; Bradley JD; Liu T; Mao H; Yang X Med Phys; 2022 Jan; 49(1):357-369. PubMed ID: 34821395 [TBL] [Abstract][Full Text] [Related]
4. Deep learning in computed tomography super resolution using multi-modality data training. Fok WYR; Fieselmann A; Herbst M; Ritschl L; Kappler S; Saalfeld S Med Phys; 2024 Apr; 51(4):2846-2860. PubMed ID: 37972365 [TBL] [Abstract][Full Text] [Related]
5. MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model. Chun J; Zhang H; Gach HM; Olberg S; Mazur T; Green O; Kim T; Kim H; Kim JS; Mutic S; Park JC Med Phys; 2019 Sep; 46(9):4148-4164. PubMed ID: 31309585 [TBL] [Abstract][Full Text] [Related]
6. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images. Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768 [TBL] [Abstract][Full Text] [Related]
7. Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network. Cui J; Gong K; Han P; Liu H; Li Q Med Phys; 2022 Apr; 49(4):2373-2385. PubMed ID: 35048390 [TBL] [Abstract][Full Text] [Related]
8. Compensation cycle consistent generative adversarial networks (Comp-GAN) for synthetic CT generation from MR scans with truncated anatomy. Zhao Y; Wang H; Yu C; Court LE; Wang X; Wang Q; Pan T; Ding Y; Phan J; Yang J Med Phys; 2023 Jul; 50(7):4399-4414. PubMed ID: 36698291 [TBL] [Abstract][Full Text] [Related]
9. High through-plane resolution CT imaging with self-supervised deep learning. Xie H; Lei Y; Wang T; Tian Z; Roper J; Bradley JD; Curran WJ; Tang X; Liu T; Yang X Phys Med Biol; 2021 Jul; 66(14):. PubMed ID: 34049297 [TBL] [Abstract][Full Text] [Related]
10. MRI super-resolution using similarity distance and multi-scale receptive field based feature fusion GAN and pre-trained slice interpolation network. U N; P M A Magn Reson Imaging; 2024 Jul; 110():195-209. PubMed ID: 38653336 [TBL] [Abstract][Full Text] [Related]
11. Improvement of megavoltage computed tomography image quality for adaptive helical tomotherapy using cycleGAN-based image synthesis with small datasets. Lee D; Jeong SW; Kim SJ; Cho H; Park W; Han Y Med Phys; 2021 Oct; 48(10):5593-5610. PubMed ID: 34418109 [TBL] [Abstract][Full Text] [Related]
12. MRI motion artifact reduction using a conditional diffusion probabilistic model (MAR-CDPM). Safari M; Yang X; Fatemi A; Archambault L Med Phys; 2024 Apr; 51(4):2598-2610. PubMed ID: 38009583 [TBL] [Abstract][Full Text] [Related]
13. SGSR: style-subnets-assisted generative latent bank for large-factor super-resolution with registered medical image dataset. Zheng T; Oda H; Hayashi Y; Nakamura S; Mori M; Takabatake H; Natori H; Oda M; Mori K Int J Comput Assist Radiol Surg; 2024 Mar; 19(3):493-506. PubMed ID: 38129364 [TBL] [Abstract][Full Text] [Related]
14. Learning low-dose CT degradation from unpaired data with flow-based model. Liu X; Liang X; Deng L; Tan S; Xie Y Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375 [TBL] [Abstract][Full Text] [Related]
15. A two-step method to improve image quality of CBCT with phantom-based supervised and patient-based unsupervised learning strategies. Liu Y; Chen X; Zhu J; Yang B; Wei R; Xiong R; Quan H; Liu Y; Dai J; Men K Phys Med Biol; 2022 Apr; 67(8):. PubMed ID: 35354124 [No Abstract] [Full Text] [Related]
16. Study of low-dose PET image recovery using supervised learning with CycleGAN. Zhao K; Zhou L; Gao S; Wang X; Wang Y; Zhao X; Wang H; Liu K; Zhu Y; Ye H PLoS One; 2020; 15(9):e0238455. PubMed ID: 32886683 [TBL] [Abstract][Full Text] [Related]
17. MRI super-resolution via realistic downsampling with adversarial learning. Huang B; Xiao H; Liu W; Zhang Y; Wu H; Wang W; Yang Y; Yang Y; Miller GW; Li T; Cai J Phys Med Biol; 2021 Oct; 66(20):. PubMed ID: 34474407 [TBL] [Abstract][Full Text] [Related]
18. Improving CBCT quality to CT level using deep learning with generative adversarial network. Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647 [TBL] [Abstract][Full Text] [Related]
19. Paired cycle-GAN-based image correction for quantitative cone-beam computed tomography. Harms J; Lei Y; Wang T; Zhang R; Zhou J; Tang X; Curran WJ; Liu T; Yang X Med Phys; 2019 Sep; 46(9):3998-4009. PubMed ID: 31206709 [TBL] [Abstract][Full Text] [Related]
20. Deep learning-based super-resolution of structural brain MRI at 1.5 T: application to quantitative volume measurement. Suwannasak A; Angkurawaranon S; Sangpin P; Chatnuntawech I; Wantanajittikul K; Yarach U MAGMA; 2024 Jul; 37(3):465-475. PubMed ID: 38758489 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]