These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 3399383)

  • 1. Erythroid-specific gene chromatin has an altered association with linker histones.
    Ridsdale JA; Rattner JB; Davie JR
    Nucleic Acids Res; 1988 Jul; 16(13):5915-26. PubMed ID: 3399383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chicken erythrocyte polynucleosomes which are soluble at physiological ionic strength and contain linker histones are highly enriched in beta-globin gene sequences.
    Ridsdale JA; Davie JR
    Nucleic Acids Res; 1987 Feb; 15(3):1081-96. PubMed ID: 3822820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone acetylation alters the capacity of the H1 histones to condense transcriptionally active/competent chromatin.
    Ridsdale JA; Hendzel MJ; Delcuve GP; Davie JR
    J Biol Chem; 1990 Mar; 265(9):5150-6. PubMed ID: 2318888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential compaction of transcriptionally competent and repressed chromatin reconstituted with histone H1 subtypes.
    Nagaraja S; Delcuve GP; Davie JR
    Biochim Biophys Acta; 1995 Jan; 1260(2):207-14. PubMed ID: 7841198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin structure of erythroid-specific genes of immature and mature chicken erythrocytes.
    Delcuve GP; Davie JR
    Biochem J; 1989 Oct; 263(1):179-86. PubMed ID: 2604693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution of compact polynucleosomes and comparison of the functions of histones H1 and H5.
    Takashima K; Kawashima S; Imahori K
    J Biochem; 1984 Oct; 96(4):1071-8. PubMed ID: 6520112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histone H3 thiol reactivity and acetyltransferases in chicken erythrocyte nuclei.
    Chan S; Attisano L; Lewis PN
    J Biol Chem; 1988 Oct; 263(30):15643-51. PubMed ID: 3170603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction of histone H5 and its globular domain with core particles, depleted chromatosomes, polynucleosomes, and a DNA decamer.
    Segers A; Muyldermans S; Wyns L
    J Biol Chem; 1991 Jan; 266(3):1502-8. PubMed ID: 1988433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene-specific differences in the aflatoxin B1 adduction of chicken erythrocyte chromatin.
    Delcuve GP; Moyer R; Bailey G; Davie JR
    Cancer Res; 1988 Dec; 48(24 Pt 1):7146-9. PubMed ID: 3142684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone H1 can be removed selectively from chicken erythrocyte chromatin at near physiological conditions.
    Muyldermans S; Lasters I; Wyns L
    Nucleic Acids Res; 1980 Feb; 8(4):731-9. PubMed ID: 7433115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin conformation and salt-induced compaction: three-dimensional structural information from cryoelectron microscopy.
    Bednar J; Horowitz RA; Dubochet J; Woodcock CL
    J Cell Biol; 1995 Dec; 131(6 Pt 1):1365-76. PubMed ID: 8522597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relaxation of chromatin structure by ethidium bromide binding: determined by viscometry and histone dissociation studies.
    Strätling WH; Seidel I
    Biochemistry; 1976 Nov; 15(22):4803-9. PubMed ID: 990244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of organic effectors on chromatin solubility, DNA-histone H1 interactions, DNA and histone H1 structures.
    Buche A; Colson P; Houssier C
    J Biomol Struct Dyn; 1993 Aug; 11(1):95-119. PubMed ID: 8216951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in rearrangements of H1 and H5 in chicken erythrocyte chromatin.
    Lasters I; Muyldermans S; Wyns L; Hamers R
    Biochemistry; 1981 Mar; 20(5):1104-10. PubMed ID: 7225320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding.
    Carruthers LM; Bednar J; Woodcock CL; Hansen JC
    Biochemistry; 1998 Oct; 37(42):14776-87. PubMed ID: 9778352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of histone acetylation, ubiquitination and variants on nucleosome stability.
    Li W; Nagaraja S; Delcuve GP; Hendzel MJ; Davie JR
    Biochem J; 1993 Dec; 296 ( Pt 3)(Pt 3):737-44. PubMed ID: 8280071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of non-histone proteins HMG1 and HMG2 with core histones in nucleosomes and core particles revealed by chemical cross-linking.
    Stros M; Kolíbalová A
    Eur J Biochem; 1987 Jan; 162(1):111-8. PubMed ID: 3816775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solubility and structure of domains of chicken erythrocyte chromatin containing transcriptionally competent and inactive genes.
    Komaiko W; Felsenfeld G
    Biochemistry; 1985 Feb; 24(5):1186-93. PubMed ID: 4096899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of histone acetylation on the solubility, H1 content and DNase I sensitivity of newly assembled chromatin.
    Perry CA; Annunziato AT
    Nucleic Acids Res; 1989 Jun; 17(11):4275-91. PubMed ID: 2740216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of salt on the binding of the linker histone H1 to DNA and nucleosomes.
    Al-Natour Z; Hassan AH
    DNA Cell Biol; 2007 Jun; 26(6):445-52. PubMed ID: 17570768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.