BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 3399383)

  • 21. Localization of histone H5 in the subunit organization of chromatin using immunoelectron microscopy.
    Mazen A; De Murcia G; Bernard S; Pouyet J; Champagne M
    Eur J Biochem; 1982 Sep; 127(1):169-76. PubMed ID: 7140753
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential association of linker histones H1 and H5 with telomeric nucleosomes in chicken erythrocytes.
    Muyldermans S; De Jonge J; Wyns L; Travers AA
    Nucleic Acids Res; 1994 Dec; 22(25):5635-9. PubMed ID: 7838716
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glycine and other amino compounds prevent chromatin precipitation at physiological ionic strength.
    Buche A; Ouassaidi A; Hacha R; Delpire E; Gilles R; Houssier C
    FEBS Lett; 1989 Apr; 247(2):367-70. PubMed ID: 2714440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromatin structure of transcriptionally competent and repressed genes.
    Kamakaka RT; Thomas JO
    EMBO J; 1990 Dec; 9(12):3997-4006. PubMed ID: 2249661
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nucleosomal histones of transcriptionally active/competent chromatin preferentially exchange with newly synthesized histones in quiescent chicken erythrocytes.
    Hendzel MJ; Davie JR
    Biochem J; 1990 Oct; 271(1):67-73. PubMed ID: 2171504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chicken erythrocyte beta-globin chromatin: enhanced solubility is a direct consequence of induced histone hyperacetylation.
    Alonso WR; Ferris RC; Zhang DE; Nelson DA
    Nucleic Acids Res; 1987 Nov; 15(22):9325-37. PubMed ID: 3684594
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Histone-H1-dependent chromatin superstructures and the suppression of gene activity.
    Weintraub H
    Cell; 1984 Aug; 38(1):17-27. PubMed ID: 6467367
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reconstitution of chromatin higher-order structure from histone H5 and depleted chromatin.
    Graziano V; Gerchman SE; Ramakrishnan V
    J Mol Biol; 1988 Oct; 203(4):997-1007. PubMed ID: 3210247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Poly(ADP-ribosyl)ation of chromatin: kinetics of relaxation and its effect on chromatin solubility.
    Frechette A; Huletsky A; Aubin RJ; de Murcia G; Mandel P; Lord A; Grondin G; Poirier GG
    Can J Biochem Cell Biol; 1985 Jul; 63(7):764-73. PubMed ID: 3930055
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reversible dissociation of linker histone from chromatin with preservation of internucleosomal repeat.
    Allan J; Staynov DZ; Gould H
    Proc Natl Acad Sci U S A; 1980 Feb; 77(2):885-9. PubMed ID: 6928686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative analysis of DNase I digestion patterns of oligo- and polynucleosomes.
    Staynov DZ; Proykova YG
    J Mol Biol; 1998 May; 279(1):59-71. PubMed ID: 9636700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Structure of histone octamers in reconstituted polynucleosomes].
    Khrapunov SN; Sivolob AV; Dragan AI; Berdyshev GD
    Mol Biol (Mosk); 1985; 19(6):1553-61. PubMed ID: 4079932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of RNA polymerase binding to chromatin by variations in linker histone composition.
    Hannon R; Bateman E; Allan J; Harborne N; Gould H
    J Mol Biol; 1984 Nov; 180(1):131-49. PubMed ID: 6392565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The distribution of H1 histone is nonuniform in chromatin and correlates with different degrees of condensation.
    Huang HC; Cole RD
    J Biol Chem; 1984 Nov; 259(22):14237-42. PubMed ID: 6501295
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A quantitative investigation of linker histone interactions with nucleosomes and chromatin.
    White AE; Hieb AR; Luger K
    Sci Rep; 2016 Jan; 6():19122. PubMed ID: 26750377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relaxed Chromatin Formation and Weak Suppression of Homologous Pairing by the Testis-Specific Linker Histone H1T.
    Machida S; Hayashida R; Takaku M; Fukuto A; Sun J; Kinomura A; Tashiro S; Kurumizaka H
    Biochemistry; 2016 Feb; 55(4):637-46. PubMed ID: 26757249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of histone and beta A-globin gene expression during differentiation of chicken erythroid cells.
    Affolter M; Côté J; Renaud J; Ruiz-Carrillo A
    Mol Cell Biol; 1987 Oct; 7(10):3663-72. PubMed ID: 3119991
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Major role of the histones H3-H4 in the folding of the chromatin fiber.
    Moore SC; Ausió J
    Biochem Biophys Res Commun; 1997 Jan; 230(1):136-9. PubMed ID: 9020030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exchange of H1 histone depends on aggregation of chromatin, not simply on ionic strength.
    Jin YJ; Cole RD
    J Biol Chem; 1986 Nov; 261(33):15805-12. PubMed ID: 3782092
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Linker histone subtypes are not generalized gene repressors.
    Trollope AF; Sapojnikova N; Thorne AW; Crane-Robinson C; Myers FA
    Biochim Biophys Acta; 2010 Sep; 1799(9):642-52. PubMed ID: 20800709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.