These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 3399384)
21. The 3'-terminal primary structure of five eukaryotic 18S rRNAs determined by the direct chemical method of sequencing. The highly conserved sequences include an invariant region complementary to eukaryotic 5S rRNA. Azad AA; Deacon NJ Nucleic Acids Res; 1980 Oct; 8(19):4365-76. PubMed ID: 7433112 [TBL] [Abstract][Full Text] [Related]
23. Distribution of sequences common to the 25--28S-ribonucleic acid genes of Xenopus laevis and Neurospora crassa. Cox RA; Thompson RD Biochem J; 1980 Apr; 187(1):75-90. PubMed ID: 6250536 [TBL] [Abstract][Full Text] [Related]
24. Oxidative damage of 18S and 5S ribosomal RNA in digestive gland of mussels exposed to trace metals. Kournoutou GG; Giannopoulou PC; Sazakli E; Leotsinidis M; Kalpaxis DL Aquat Toxicol; 2017 Nov; 192():136-147. PubMed ID: 28957715 [TBL] [Abstract][Full Text] [Related]
25. Three helical domains form a protein binding site in the 5S RNA-protein complex from eukaryotic ribosomes. Nazar RN; Wildeman AG Nucleic Acids Res; 1983 May; 11(10):3155-68. PubMed ID: 6344007 [TBL] [Abstract][Full Text] [Related]
26. Detection of Aspergillus ribosomal RNA using biotinylated oligonucleotide probes. Park CS; Kim J; Montone KT Diagn Mol Pathol; 1997 Oct; 6(5):255-60. PubMed ID: 9458383 [TBL] [Abstract][Full Text] [Related]
27. Nucleotide sequence through the 18S-28S intergene region of a vertebrate ribosomal transcription unit. Hall LM; Maden BE Nucleic Acids Res; 1980 Dec; 8(24):5993-6005. PubMed ID: 6258158 [TBL] [Abstract][Full Text] [Related]
28. Escherichia coli 4.5S RNA gene function can be complemented by heterologous bacterial RNA genes. Struck JC; Lempicki RA; Toschka HY; Erdmann VA; Fournier MJ J Bacteriol; 1990 Mar; 172(3):1284-8. PubMed ID: 1689715 [TBL] [Abstract][Full Text] [Related]
29. Transcription of genomic bovine and Xenopus laevis DNA species by RNA polymerase III in HeLa-cell cytosol extracts. Furth JJ; Su CY Biochem J; 1986 Aug; 237(3):827-35. PubMed ID: 3800921 [TBL] [Abstract][Full Text] [Related]
30. Identification of the 5S RNA binding site in intermolecular complexes of wheat embryo ribosomal 5S and 18S RNA. Nichols JL; Wijesinghe W Can J Biochem; 1978 Jul; 56(7):760-4. PubMed ID: 688064 [TBL] [Abstract][Full Text] [Related]
31. Methylation map of Xenopus laevis ribosomal RNA. Maden BE Nature; 1980 Nov; 288(5788):293-6. PubMed ID: 7432528 [TBL] [Abstract][Full Text] [Related]
32. Nucleotide sequence of the region between the 18S rRNA sequence and the 28S rRNA sequence of rat ribosomal DNA. Subrahmanyam CS; Cassidy B; Busch H; Rothblum LI Nucleic Acids Res; 1982 Jun; 10(12):3667-80. PubMed ID: 6287418 [TBL] [Abstract][Full Text] [Related]
33. The 3'-terminal region of bacterial 23S ribosomal RNA: structure and homology with the 3'-terminal region of eukaryotic 28S rRNA and with chloroplast 4.5s rRNA. Machatt MA; Ebel JP; Branlant C Nucleic Acids Res; 1981 Apr; 9(7):1533-49. PubMed ID: 6164989 [TBL] [Abstract][Full Text] [Related]
34. Intermolecular mRNA-rRNA hybridization and the distribution of potential interaction regions in murine 18S rRNA. Matveeva OV; Shabalina SA Nucleic Acids Res; 1993 Feb; 21(4):1007-11. PubMed ID: 8451167 [TBL] [Abstract][Full Text] [Related]
35. Computer analysis of the sequence relationships among 4.5S RNA molecular species from various sources. Takeishi K; Gotoh O J Biochem; 1982 Oct; 92(4):1173-7. PubMed ID: 6184365 [TBL] [Abstract][Full Text] [Related]
36. 3'-Terminal sequence of wheat mitochondrial 18S ribosomal RNA: further evidence of a eubacterial evolutionary origin. Schnare MN; Gray MW Nucleic Acids Res; 1982 Jul; 10(13):3921-32. PubMed ID: 7050913 [TBL] [Abstract][Full Text] [Related]
37. Yeast TFIIIA + TFIIIC/tau-factor, but not yeast TFIIIA alone, interacts with the Xenopus 5S rRNA gene. Struksnes K; Forus A; Gabrielsen OS; Oyen TB Nucleic Acids Res; 1991 Feb; 19(3):565-71. PubMed ID: 2011529 [TBL] [Abstract][Full Text] [Related]
38. Selective and accurate transcription of the Xenopus laevis 5S RNA genes in isolated chromatin by purified RNA polymerase III. Parker CS; Roeder RG Proc Natl Acad Sci U S A; 1977 Jan; 74(1):44-8. PubMed ID: 264693 [TBL] [Abstract][Full Text] [Related]
39. rRNA-complementarity in the 5' untranslated region of mRNA specifying the Gtx homeodomain protein: evidence that base- pairing to 18S rRNA affects translational efficiency. Hu MC; Tranque P; Edelman GM; Mauro VP Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1339-44. PubMed ID: 9990025 [TBL] [Abstract][Full Text] [Related]
40. Control of 5S RNA synthesis during early development of anucleolate and partial nucleolate mutants of Xenopus laevis. Miller L J Cell Biol; 1973 Dec; 59(3):624-32. PubMed ID: 4761330 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]