These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 3399387)

  • 1. Distinct subfamilies of primate L1Gg retroposons, with some elements carrying tandem repeats in the 5' region.
    Lloyd JA; Potter SS
    Nucleic Acids Res; 1988 Jul; 16(13):6147-56. PubMed ID: 3399387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple L1 progenitors in prosimian primates: phylogenetic evidence from ORF1 sequences.
    Stanhope MJ; Tagle DA; Shivji MS; Hattori M; Sakaki Y; Slightom JL; Goodman M
    J Mol Evol; 1993 Aug; 37(2):179-89. PubMed ID: 8411207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The beta globin gene cluster of the prosimian primate Galago crassicaudatus: nucleotide sequence determination of the 41-kb cluster and comparative sequence analyses.
    Tagle DA; Stanhope MJ; Siemieniak DR; Benson P; Goodman M; Slightom JL
    Genomics; 1992 Jul; 13(3):741-60. PubMed ID: 1639402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a third major SINE family of repetitive sequences in the galago genome.
    Daniels GR; Deininger PL
    Nucleic Acids Res; 1991 Apr; 19(7):1649-56. PubMed ID: 1840654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single copy sequences in galago DNA resemble a repetitive human retrotransposon-like family.
    Schmid CW; Wong EF; Deka N
    J Mol Evol; 1990 Aug; 31(2):92-100. PubMed ID: 2170666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primate evolution of the alpha-globin gene cluster and its Alu-like repeats.
    Sawada I; Schmid CW
    J Mol Biol; 1986 Dec; 192(4):693-709. PubMed ID: 3586010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo transcription of a cloned prosimian primate SINE sequence.
    Slagel VK; Deininger PL
    Nucleic Acids Res; 1989 Nov; 17(21):8669-82. PubMed ID: 2479909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A second major class of Alu family repeated DNA sequences in a primate genome.
    Daniels GR; Deininger PL
    Nucleic Acids Res; 1983 Nov; 11(21):7595-610. PubMed ID: 6647032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 5' ends of LINE1 repeats in rabbit DNA define subfamilies and reveal a short sequence conserved between rabbits and humans.
    Price DK; Ayres JA; Pasqualone D; Cabell CH; Miller W; Hardison RC
    Genomics; 1992 Oct; 14(2):320-31. PubMed ID: 1427848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A transposon with an unusual LTR arrangement from Chlamydomonas reinhardtii contains an internal tandem array of 76 bp repeats.
    Day A; Rochaix JD
    Nucleic Acids Res; 1991 Mar; 19(6):1259-66. PubMed ID: 1851555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Species-specific homogeneity of the primate Alu family of repeated DNA sequences.
    Daniels GR; Fox GM; Loewensteiner D; Schmid CW; Deininger PL
    Nucleic Acids Res; 1983 Nov; 11(21):7579-93. PubMed ID: 6647031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The involucrin gene of the galago. Existence of a correction process acting on its segment of repeats.
    Phillips M; Djian P; Green H
    J Biol Chem; 1990 May; 265(14):7804-7. PubMed ID: 2335506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration site preferences of the Alu family and similar repetitive DNA sequences.
    Daniels GR; Deininger PL
    Nucleic Acids Res; 1985 Dec; 13(24):8939-54. PubMed ID: 3001654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeat sequence families derived from mammalian tRNA genes.
    Daniels GR; Deininger PL
    Nature; 1985 Oct 31-Nov 6; 317(6040):819-22. PubMed ID: 3851163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Existence of at least three distinct Alu subfamilies.
    Willard C; Nguyen HT; Schmid CW
    J Mol Evol; 1987; 26(3):180-6. PubMed ID: 3129565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unrelated sequences at the 5' end of mouse LINE-1 repeated elements define two distinct subfamilies.
    Wincker P; Jubier-Maurin V; Roizès G
    Nucleic Acids Res; 1987 Nov; 15(21):8593-606. PubMed ID: 3684566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic screening of the human genome: identification of differentially hybridizing repetitive sequence families.
    Lloyd JA; Lamb AN; Potter SS
    Mol Biol Evol; 1987 Mar; 4(2):85-98. PubMed ID: 2833668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary structure of the ribosomal DNA intergenic spacer from the mosquito, Aedes albopictus.
    Baldridge GD; Fallon AM
    DNA Cell Biol; 1992; 11(1):51-9. PubMed ID: 1739434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple human DNA-repeats associated with genomic hypervariability, flanking the genomic retroposons and similar to retroviral sites.
    Rogaev EI
    Nucleic Acids Res; 1990 Apr; 18(7):1879-85. PubMed ID: 2159624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences.
    Smit AF; Tóth G; Riggs AD; Jurka J
    J Mol Biol; 1995 Feb; 246(3):401-417. PubMed ID: 7877164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.