BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 33994176)

  • 21. Microfluidic systems for cancer diagnostics.
    Garcia-Cordero JL; Maerkl SJ
    Curr Opin Biotechnol; 2020 Oct; 65():37-44. PubMed ID: 31891869
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Current developments and applications of microfluidic technology toward clinical translation of nanomedicines.
    Liu D; Zhang H; Fontana F; Hirvonen JT; Santos HA
    Adv Drug Deliv Rev; 2018 Mar; 128():54-83. PubMed ID: 28801093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomaterials and Microfluidics for Drug Discovery and Development.
    Carvalho MR; Truckenmuller R; Reis RL; Oliveira JM
    Adv Exp Med Biol; 2020; 1230():121-135. PubMed ID: 32285368
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications.
    Luka G; Ahmadi A; Najjaran H; Alocilja E; DeRosa M; Wolthers K; Malki A; Aziz H; Althani A; Hoorfar M
    Sensors (Basel); 2015 Dec; 15(12):30011-31. PubMed ID: 26633409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of microfluidic chip technology in pharmaceutical analysis: A review.
    Cui P; Wang S
    J Pharm Anal; 2019 Aug; 9(4):238-247. PubMed ID: 31452961
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Organ-on-a-chip devices advance to market.
    Zhang B; Radisic M
    Lab Chip; 2017 Jul; 17(14):2395-2420. PubMed ID: 28617487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lab-on-a-chip: microfluidics in drug discovery.
    Dittrich PS; Manz A
    Nat Rev Drug Discov; 2006 Mar; 5(3):210-8. PubMed ID: 16518374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. "Connecting worlds - a view on microfluidics for a wider application".
    Fernandes AC; Gernaey KV; Krühne U
    Biotechnol Adv; 2018; 36(4):1341-1366. PubMed ID: 29733891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CMOS Enabled Microfluidic Systems for Healthcare Based Applications.
    Khan SM; Gumus A; Nassar JM; Hussain MM
    Adv Mater; 2018 Apr; 30(16):e1705759. PubMed ID: 29484725
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Next generation human skin constructs as advanced tools for drug development.
    Abaci HE; Guo Z; Doucet Y; Jacków J; Christiano A
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1657-1668. PubMed ID: 28592171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The present and future role of microfluidics in biomedical research.
    Sackmann EK; Fulton AL; Beebe DJ
    Nature; 2014 Mar; 507(7491):181-9. PubMed ID: 24622198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic-based technologies for diagnosis, prevention, and treatment of COVID-19: recent advances and future directions.
    Tarim EA; Anil Inevi M; Ozkan I; Kecili S; Bilgi E; Baslar MS; Ozcivici E; Oksel Karakus C; Tekin HC
    Biomed Microdevices; 2023 Mar; 25(2):10. PubMed ID: 36913137
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membrane integration into PDMS-free microfluidic platforms for organ-on-chip and analytical chemistry applications.
    Schneider S; Gruner D; Richter A; Loskill P
    Lab Chip; 2021 May; 21(10):1866-1885. PubMed ID: 33949565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ecotoxicology Goes on a Chip: Embracing Miniaturized Bioanalysis in Aquatic Risk Assessment.
    Campana O; Wlodkowic D
    Environ Sci Technol; 2018 Feb; 52(3):932-946. PubMed ID: 29284083
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prospects and Opportunities for Microsystems and Microfluidic Devices in the Field of Otorhinolaryngology.
    Hwang SH; Gonzalez-Suarez AM; Stybayeva G; Revzin A
    Clin Exp Otorhinolaryngol; 2021 Feb; 14(1):29-42. PubMed ID: 32772034
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances in Testing Techniques for Digital Microfluidic Biochips.
    Shukla V; Hussin FA; Hamid NH; Zain Ali NB
    Sensors (Basel); 2017 Jul; 17(8):. PubMed ID: 28749411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent advances in microfluidic technologies for separation of biological cells.
    Sun L; Yang W; Cai S; Chen Y; Chu H; Yu H; Wang Y; Liu L
    Biomed Microdevices; 2020 Aug; 22(3):55. PubMed ID: 32797312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic Pneumatic Cages: A Novel Approach for In-chip Crystal Trapping, Manipulation and Controlled Chemical Treatment.
    Abrishamkar A; Paradinas M; Bailo E; Rodriguez-Trujillo R; Pfattner R; Rossi RM; Ocal C; deMello AJ; Amabilino DB; Puigmartí-Luis J
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27500740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic Handling and Analysis of Giant Vesicles for Use as Artificial Cells: A Review.
    Robinson T
    Adv Biosyst; 2019 Jun; 3(6):e1800318. PubMed ID: 32648705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advances in Microfluidics-Based Technologies for Single Cell Culture.
    García Alonso D; Yu M; Qu H; Ma L; Shen F
    Adv Biosyst; 2019 Nov; 3(11):e1900003. PubMed ID: 32648694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.