BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 33994301)

  • 21. Heart in a dish - choosing the right in vitro model.
    Drakhlis L; Zweigerdt R
    Dis Model Mech; 2023 May; 16(5):. PubMed ID: 36825553
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expansion of Human iPSC-Derived Ureteric Bud Organoids with Repeated Branching Potential.
    Mae SI; Ryosaka M; Sakamoto S; Matsuse K; Nozaki A; Igami M; Kabai R; Watanabe A; Osafune K
    Cell Rep; 2020 Jul; 32(4):107963. PubMed ID: 32726627
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An overview of cardiac morphogenesis.
    Schleich JM; Abdulla T; Summers R; Houyel L
    Arch Cardiovasc Dis; 2013 Nov; 106(11):612-23. PubMed ID: 24138816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strategies for analyzing cardiac phenotypes in the zebrafish embryo.
    Houk AR; Yelon D
    Methods Cell Biol; 2016; 134():335-68. PubMed ID: 27312497
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human induced pluripotent stem cell-derived ectodermal precursor cells contribute to hair follicle morphogenesis in vivo.
    Veraitch O; Kobayashi T; Imaizumi Y; Akamatsu W; Sasaki T; Yamanaka S; Amagai M; Okano H; Ohyama M
    J Invest Dermatol; 2013 Jun; 133(6):1479-88. PubMed ID: 23321923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Making or breaking the heart: from lineage determination to morphogenesis.
    Srivastava D
    Cell; 2006 Sep; 126(6):1037-48. PubMed ID: 16990131
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organoids: Modeling Development and the Stem Cell Niche in a Dish.
    Kretzschmar K; Clevers H
    Dev Cell; 2016 Sep; 38(6):590-600. PubMed ID: 27676432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The case for applying tissue engineering methodologies to instruct human organoid morphogenesis.
    Marti-Figueroa CR; Ashton RS
    Acta Biomater; 2017 May; 54():35-44. PubMed ID: 28315813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organ Function as a Modulator of Organ Formation: Lessons from Zebrafish.
    Collins MM; Stainier DY
    Curr Top Dev Biol; 2016; 117():417-33. PubMed ID: 26969993
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Retinoic acid signaling modulation guides in vitro specification of human heart field-specific progenitor pools.
    Zawada D; Kornherr J; Meier AB; Santamaria G; Dorn T; Nowak-Imialek M; Ortmann D; Zhang F; Lachmann M; Dreßen M; Ortiz M; Mascetti VL; Harmer SC; Nobles M; Tinker A; De Angelis MT; Pedersen RA; Grote P; Laugwitz KL; Moretti A; Goedel A
    Nat Commun; 2023 Apr; 14(1):1722. PubMed ID: 37012244
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human pluripotent stem cell-based models of heart development and disease.
    Velichkova G; Dobreva G
    Cells Dev; 2023 Sep; 175():203857. PubMed ID: 37257755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellular and Engineered Organoids for Cardiovascular Models.
    Thomas D; Choi S; Alamana C; Parker KK; Wu JC
    Circ Res; 2022 Jun; 130(12):1780-1802. PubMed ID: 35679369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fish primary embryonic pluripotent cells assemble into retinal tissue mirroring in vivo early eye development.
    Zilova L; Weinhardt V; Tavhelidse T; Schlagheck C; Thumberger T; Wittbrodt J
    Elife; 2021 Jul; 10():. PubMed ID: 34252023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring landscapes of brain morphogenesis with organoids.
    Jabaudon D; Lancaster M
    Development; 2018 Nov; 145(22):. PubMed ID: 30455367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A HCN4+ cardiomyogenic progenitor derived from the first heart field and human pluripotent stem cells.
    Später D; Abramczuk MK; Buac K; Zangi L; Stachel MW; Clarke J; Sahara M; Ludwig A; Chien KR
    Nat Cell Biol; 2013 Sep; 15(9):1098-106. PubMed ID: 23974038
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An evidence appraisal of heart organoids in a dish and commensurability to human heart development in vivo.
    Thomas D; de Jesus Perez VA; Sayed N
    BMC Cardiovasc Disord; 2022 Mar; 22(1):122. PubMed ID: 35317745
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Harnessing the Power of Stem Cell Models to Study Shared Genetic Variants in Congenital Heart Diseases and Neurodevelopmental Disorders.
    Chang X; Gu M; Tchieu J
    Cells; 2022 Jan; 11(3):. PubMed ID: 35159270
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generating Self-Assembling Human Heart Organoids Derived from Pluripotent Stem Cells.
    Lewis-Israeli YR; Volmert BD; Gabalski MA; Huang AR; Aguirre A
    J Vis Exp; 2021 Sep; (175):. PubMed ID: 34605811
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rbm20-deficient cardiogenesis reveals early disruption of RNA processing and sarcomere remodeling establishing a developmental etiology for dilated cardiomyopathy.
    Beraldi R; Li X; Martinez Fernandez A; Reyes S; Secreto F; Terzic A; Olson TM; Nelson TJ
    Hum Mol Genet; 2014 Jul; 23(14):3779-91. PubMed ID: 24584570
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Co-emergence of cardiac and gut tissues promotes cardiomyocyte maturation within human iPSC-derived organoids.
    Silva AC; Matthys OB; Joy DA; Kauss MA; Natarajan V; Lai MH; Turaga D; Blair AP; Alexanian M; Bruneau BG; McDevitt TC
    Cell Stem Cell; 2021 Dec; 28(12):2137-2152.e6. PubMed ID: 34861147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.