BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 33994301)

  • 41. A decade of advances in the molecular embryology and genetics underlying congenital heart defects.
    Kodo K; Yamagishi H
    Circ J; 2011; 75(10):2296-304. PubMed ID: 21914956
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Concise Review: Fluorescent Reporters in Human Pluripotent Stem Cells: Contributions to Cardiac Differentiation and Their Applications in Cardiac Disease and Toxicity.
    Den Hartogh SC; Passier R
    Stem Cells; 2016 Jan; 34(1):13-26. PubMed ID: 26446349
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Programming Morphogenesis through Systems and Synthetic Biology.
    Velazquez JJ; Su E; Cahan P; Ebrahimkhani MR
    Trends Biotechnol; 2018 Apr; 36(4):415-429. PubMed ID: 29229492
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Numb family proteins: novel players in cardiac morphogenesis and cardiac progenitor cell differentiation.
    Wu M; Li J
    Biomol Concepts; 2015 Apr; 6(2):137-48. PubMed ID: 25883210
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heart fields and cardiac morphogenesis.
    Kelly RG; Buckingham ME; Moorman AF
    Cold Spring Harb Perspect Med; 2014 Oct; 4(10):. PubMed ID: 25274757
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High efficiency differentiation of human pluripotent stem cells to cardiomyocytes and characterization by flow cytometry.
    Bhattacharya S; Burridge PW; Kropp EM; Chuppa SL; Kwok WM; Wu JC; Boheler KR; Gundry RL
    J Vis Exp; 2014 Sep; (91):52010. PubMed ID: 25286293
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Directed differentiation of pluripotent stem cells: from developmental biology to therapeutic applications.
    Irion S; Nostro MC; Kattman SJ; Keller GM
    Cold Spring Harb Symp Quant Biol; 2008; 73():101-10. PubMed ID: 19329573
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Autophagy is essential for cardiac morphogenesis during vertebrate development.
    Lee E; Koo Y; Ng A; Wei Y; Luby-Phelps K; Juraszek A; Xavier RJ; Cleaver O; Levine B; Amatruda JF
    Autophagy; 2014 Apr; 10(4):572-87. PubMed ID: 24441423
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Heart organoids and tissue models for modeling development and disease.
    Miyamoto M; Nam L; Kannan S; Kwon C
    Semin Cell Dev Biol; 2021 Oct; 118():119-128. PubMed ID: 33775518
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Next-generation models of human cardiogenesis via genome editing.
    Lian X; Xu J; Li J; Chien KR
    Cold Spring Harb Perspect Med; 2014 Sep; 4(12):a013920. PubMed ID: 25237142
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pluripotent stem cell models of cardiac disease and their implication for drug discovery and development.
    Davis RP; van den Berg CW; Casini S; Braam SR; Mummery CL
    Trends Mol Med; 2011 Sep; 17(9):475-84. PubMed ID: 21703926
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Specification of multipotential cardiovascular progenitor cells during embryonic stem cell differentiation and embryonic development.
    Kattman SJ; Adler ED; Keller GM
    Trends Cardiovasc Med; 2007 Oct; 17(7):240-6. PubMed ID: 17936206
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Understanding Heart Field Progenitor Cells for Modeling Congenital Heart Diseases.
    Miyamoto M; Gangrade H; Tampakakis E
    Curr Cardiol Rep; 2021 Mar; 23(5):38. PubMed ID: 33694131
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Renal Subcapsular Transplantation of PSC-Derived Kidney Organoids Induces Neo-vasculogenesis and Significant Glomerular and Tubular Maturation In Vivo.
    van den Berg CW; Ritsma L; Avramut MC; Wiersma LE; van den Berg BM; Leuning DG; Lievers E; Koning M; Vanslambrouck JM; Koster AJ; Howden SE; Takasato M; Little MH; Rabelink TJ
    Stem Cell Reports; 2018 Mar; 10(3):751-765. PubMed ID: 29503086
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bioengineering Human Pluripotent Stem Cell-Derived Retinal Organoids and Optic Vesicle-Containing Brain Organoids for Ocular Diseases.
    Arthur P; Muok L; Nathani A; Zeng EZ; Sun L; Li Y; Singh M
    Cells; 2022 Oct; 11(21):. PubMed ID: 36359825
    [TBL] [Abstract][Full Text] [Related]  

  • 56. From Endoderm to Liver Bud: Paradigms of Cell Type Specification and Tissue Morphogenesis.
    Zaret KS
    Curr Top Dev Biol; 2016; 117():647-69. PubMed ID: 26970006
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish.
    McCauley HA; Wells JM
    Development; 2017 Mar; 144(6):958-962. PubMed ID: 28292841
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modeling Cancer with Pluripotent Stem Cells.
    Gingold J; Zhou R; Lemischka IR; Lee DF
    Trends Cancer; 2016 Sep; 2(9):485-494. PubMed ID: 27722205
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cardiac development in zebrafish: coordination of form and function.
    Glickman NS; Yelon D
    Semin Cell Dev Biol; 2002 Dec; 13(6):507-13. PubMed ID: 12468254
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The atypical Rho GTPase, RhoU, regulates cell-adhesion molecules during cardiac morphogenesis.
    Dickover M; Hegarty JM; Ly K; Lopez D; Yang H; Zhang R; Tedeschi N; Hsiai TK; Chi NC
    Dev Biol; 2014 May; 389(2):182-91. PubMed ID: 24607366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.