BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 33994301)

  • 61. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest.
    Mills RJ; Titmarsh DM; Koenig X; Parker BL; Ryall JG; Quaife-Ryan GA; Voges HK; Hodson MP; Ferguson C; Drowley L; Plowright AT; Needham EJ; Wang QD; Gregorevic P; Xin M; Thomas WG; Parton RG; Nielsen LK; Launikonis BS; James DE; Elliott DA; Porrello ER; Hudson JE
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):E8372-E8381. PubMed ID: 28916735
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Generation of Functional Thyroid Tissue Using 3D-Based Culture of Embryonic Stem Cells.
    Antonica F; Kasprzyk DF; Schiavo AA; Romitti M; Costagliola S
    Methods Mol Biol; 2017; 1597():85-95. PubMed ID: 28361312
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Higher-Order Kidney Organogenesis from Pluripotent Stem Cells.
    Taguchi A; Nishinakamura R
    Cell Stem Cell; 2017 Dec; 21(6):730-746.e6. PubMed ID: 29129523
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Nephron organoids derived from human pluripotent stem cells model kidney development and injury.
    Morizane R; Lam AQ; Freedman BS; Kishi S; Valerius MT; Bonventre JV
    Nat Biotechnol; 2015 Nov; 33(11):1193-200. PubMed ID: 26458176
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Recruitment of new cells into the postnatal heart: potential modification of phenotype by periostin.
    Visconti RP; Markwald RR
    Ann N Y Acad Sci; 2006 Oct; 1080():19-33. PubMed ID: 17132772
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Uncovering the molecular and cellular mechanisms of heart development using the zebrafish.
    Staudt D; Stainier D
    Annu Rev Genet; 2012; 46():397-418. PubMed ID: 22974299
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Genome engineering of stem cell organoids for disease modeling.
    Sun Y; Ding Q
    Protein Cell; 2017 May; 8(5):315-327. PubMed ID: 28102490
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Pluripotent stem cells: a cell model for early cardiac development].
    Pucéat M
    Biol Aujourdhui; 2012; 206(1):25-9. PubMed ID: 22463993
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Planar Cell Polarity Signaling in Mammalian Cardiac Morphogenesis.
    Li D; Wang J
    Pediatr Cardiol; 2018 Jun; 39(5):1052-1062. PubMed ID: 29564519
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Partitioning the heart: mechanisms of cardiac septation and valve development.
    Lin CJ; Lin CY; Chen CH; Zhou B; Chang CP
    Development; 2012 Sep; 139(18):3277-99. PubMed ID: 22912411
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modeling human development in 3D culture.
    Ader M; Tanaka EM
    Curr Opin Cell Biol; 2014 Dec; 31():23-8. PubMed ID: 25033469
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mechanical Stress Promotes Maturation of Human Myocardium From Pluripotent Stem Cell-Derived Progenitors.
    Ruan JL; Tulloch NL; Saiget M; Paige SL; Razumova MV; Regnier M; Tung KC; Keller G; Pabon L; Reinecke H; Murry CE
    Stem Cells; 2015 Jul; 33(7):2148-57. PubMed ID: 25865043
    [TBL] [Abstract][Full Text] [Related]  

  • 73. miRNA-1 and miRNA-133a are involved in early commitment of pluripotent stem cells and demonstrate antagonistic roles in the regulation of cardiac differentiation.
    Izarra A; Moscoso I; Cañón S; Carreiro C; Fondevila D; Martín-Caballero J; Blanca V; Valiente I; Díez-Juan A; Bernad A
    J Tissue Eng Regen Med; 2017 Mar; 11(3):787-799. PubMed ID: 25492026
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Genome editing of human pluripotent stem cells to generate human cellular disease models.
    Musunuru K
    Dis Model Mech; 2013 Jul; 6(4):896-904. PubMed ID: 23751357
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Directed Differentiation of Human Pluripotent Stem Cells for the Generation of High-Order Kidney Organoids.
    Selfa IL; Gallo M; Montserrat N; Garreta E
    Methods Mol Biol; 2021; 2258():171-192. PubMed ID: 33340361
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Understanding cardiac development through the perspective of gene regulation and gene manipulation.
    Witte DP; Aronow BJ; Harmony JA
    Pediatr Pathol Lab Med; 1996; 16(2):173-94. PubMed ID: 9025826
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Generation of novel reporter stem cells and their application for molecular imaging of cardiac-differentiated stem cells in vivo.
    Kammili RK; Taylor DG; Xia J; Osuala K; Thompson K; Menick DR; Ebert SN
    Stem Cells Dev; 2010 Sep; 19(9):1437-48. PubMed ID: 20109065
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Heavy and light roles: myosin in the morphogenesis of the heart.
    England J; Loughna S
    Cell Mol Life Sci; 2013 Apr; 70(7):1221-39. PubMed ID: 22955375
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Modeling Heart Diseases on a Chip: Advantages and Future Opportunities.
    Mourad O; Yee R; Li M; Nunes SS
    Circ Res; 2023 Feb; 132(4):483-497. PubMed ID: 36795846
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Generating a self-organizing kidney from pluripotent cells.
    Little MH; Takasato M
    Curr Opin Organ Transplant; 2015 Apr; 20(2):178-86. PubMed ID: 25856180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.