These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 33994301)

  • 81. Modeling Congenital Heart Disease Using Pluripotent Stem Cells.
    Sharma A
    Curr Cardiol Rep; 2020 Jun; 22(8):55. PubMed ID: 32562063
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Fetal reprogramming and senescence in hypoplastic left heart syndrome and in human pluripotent stem cells during cardiac differentiation.
    Gaber N; Gagliardi M; Patel P; Kinnear C; Zhang C; Chitayat D; Shannon P; Jaeggi E; Tabori U; Keller G; Mital S
    Am J Pathol; 2013 Sep; 183(3):720-34. PubMed ID: 23871585
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Towards organogenesis and morphogenesis in vitro: harnessing engineered microenvironment and autonomous behaviors of pluripotent stem cells.
    Li N; Xie T; Sun Y
    Integr Biol (Camb); 2018 Oct; 10(10):574-586. PubMed ID: 30225509
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Progenitor cell therapy for heart disease.
    Gonzales C; Pedrazzini T
    Exp Cell Res; 2009 Nov; 315(18):3077-85. PubMed ID: 19747911
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation.
    Stennard FA; Costa MW; Lai D; Biben C; Furtado MB; Solloway MJ; McCulley DJ; Leimena C; Preis JI; Dunwoodie SL; Elliott DE; Prall OW; Black BL; Fatkin D; Harvey RP
    Development; 2005 May; 132(10):2451-62. PubMed ID: 15843414
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts.
    Garreta E; de Oñate L; Fernández-Santos ME; Oria R; Tarantino C; Climent AM; Marco A; Samitier M; Martínez E; Valls-Margarit M; Matesanz R; Taylor DA; Fernández-Avilés F; Izpisua Belmonte JC; Montserrat N
    Biomaterials; 2016 Aug; 98():64-78. PubMed ID: 27179434
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Atrial natriuretic factor in the developing heart: a signpost for cardiac morphogenesis.
    Bruneau BG
    Can J Physiol Pharmacol; 2011 Aug; 89(8):533-7. PubMed ID: 21806510
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Differentiation of Pluripotent Stem Cells for Disease Modeling: Learning from Heart Development.
    Chi C; Roland TJ; Song K
    Pharmaceuticals (Basel); 2024 Mar; 17(3):. PubMed ID: 38543122
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Cardiac construction-Recent advances in morphological and transcriptional modeling of early heart development.
    Noël ES
    Curr Top Dev Biol; 2024; 156():121-156. PubMed ID: 38556421
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Early heart development: examining the dynamics of function-form emergence.
    Combémorel N; Cavell N; Tyser RCV
    Biochem Soc Trans; 2024 Jul; ():. PubMed ID: 38979619
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Modeling morphogenesis.
    Mukhopadhyay M
    Nat Methods; 2023 Nov; 20(11):1622. PubMed ID: 37935984
    [No Abstract]   [Full Text] [Related]  

  • 92. Cardioids reveal self-organizing principles of human cardiogenesis.
    Hofbauer P; Jahnel SM; Papai N; Giesshammer M; Deyett A; Schmidt C; Penc M; Tavernini K; Grdseloff N; Meledeth C; Ginistrelli LC; Ctortecka C; Šalic Š; Novatchkova M; Mendjan S
    Cell; 2021 Jun; 184(12):3299-3317.e22. PubMed ID: 34019794
    [TBL] [Abstract][Full Text] [Related]  

  • 93. CalTrack: High-Throughput Automated Calcium Transient Analysis in Cardiomyocytes.
    Psaras Y; Margara F; Cicconet M; Sparrow AJ; Repetti GG; Schmid M; Steeples V; Wilcox JAL; Bueno-Orovio A; Redwood CS; Watkins HC; Robinson P; Rodriguez B; Seidman JG; Seidman CE; Toepfer CN
    Circ Res; 2021 Jul; 129(2):326-341. PubMed ID: 34018815
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Cardiac Organoids to Model and Heal Heart Failure and Cardiomyopathies.
    Seguret M; Vermersch E; Jouve C; Hulot JS
    Biomedicines; 2021 May; 9(5):. PubMed ID: 34069816
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Modeling Human Cardiac Chambers with Organoids.
    Srivastava D
    N Engl J Med; 2021 Aug; 385(9):847-849. PubMed ID: 34437788
    [No Abstract]   [Full Text] [Related]  

  • 96. Imaging Approaches and the Quantitative Analysis of Heart Development.
    Raiola M; Sendra M; Torres M
    J Cardiovasc Dev Dis; 2023 Mar; 10(4):. PubMed ID: 37103024
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Heart generation and regeneration.
    Tampakakis E; Kwon C
    Semin Cell Dev Biol; 2021 Oct; 118():92-93. PubMed ID: 34304994
    [No Abstract]   [Full Text] [Related]  

  • 98. Of form and function: Early cardiac morphogenesis across classical and emerging model systems.
    Shewale B; Dubois N
    Semin Cell Dev Biol; 2021 Oct; 118():107-118. PubMed ID: 33994301
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Bioengineering tissue morphogenesis and function in human neural organoids.
    Fedorchak NJ; Iyer N; Ashton RS
    Semin Cell Dev Biol; 2021 Mar; 111():52-59. PubMed ID: 32540123
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Engineered platforms for mimicking cardiac development and drug screening.
    Stiefbold M; Zhang H; Wan LQ
    Cell Mol Life Sci; 2024 Apr; 81(1):197. PubMed ID: 38664263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.