BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33994352)

  • 1. Slit2 is necessary for optic axon organization in the zebrafish ventral midline.
    Davison C; Zolessi FR
    Cells Dev; 2021 Jun; 166():203677. PubMed ID: 33994352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zebrafish Slit2 and Slit3 Act Together to Regulate Retinal Axon Crossing at the Midline.
    Davison C; Bedó G; Zolessi FR
    J Dev Biol; 2022 Sep; 10(4):. PubMed ID: 36278546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BMP Signaling Interferes with Optic Chiasm Formation and Retinal Ganglion Cell Pathfinding in Zebrafish.
    Knickmeyer MD; Mateo JL; Heermann S
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33925390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steerable-filter based quantification of axonal populations at the developing optic chiasm reveal significant defects in Slit2(-/-) as well as Slit1(-/-)Slit2(-/-) embryos.
    Down M; Willshaw DA; Pratt T; Price DJ
    BMC Neurosci; 2013 Jan; 14():9. PubMed ID: 23320558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. cAMP-induced expression of neuropilin1 promotes retinal axon crossing in the zebrafish optic chiasm.
    Dell AL; Fried-Cassorla E; Xu H; Raper JA
    J Neurosci; 2013 Jul; 33(27):11076-88. PubMed ID: 23825413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hedgehog regulated Slit expression determines commissure and glial cell position in the zebrafish forebrain.
    Barresi MJ; Hutson LD; Chien CB; Karlstrom RO
    Development; 2005 Aug; 132(16):3643-56. PubMed ID: 16033800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foxd1 is required for proper formation of the optic chiasm.
    Herrera E; Marcus R; Li S; Williams SE; Erskine L; Lai E; Mason C
    Development; 2004 Nov; 131(22):5727-39. PubMed ID: 15509772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal ganglion cell axon guidance in the mouse optic chiasm: expression and function of robos and slits.
    Erskine L; Williams SE; Brose K; Kidd T; Rachel RA; Goodman CS; Tessier-Lavigne M; Mason CA
    J Neurosci; 2000 Jul; 20(13):4975-82. PubMed ID: 10864955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Randomized retinal ganglion cell axon routing at the optic chiasm of GAP-43-deficient mice: association with midline recrossing and lack of normal ipsilateral axon turning.
    Sretavan DW; Kruger K
    J Neurosci; 1998 Dec; 18(24):10502-13. PubMed ID: 9852588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The LRR receptor Islr2 is required for retinal axon routing at the vertebrate optic chiasm.
    Panza P; Sitko AA; Maischein HM; Koch I; Flötenmeyer M; Wright GJ; Mandai K; Mason CA; Söllner C
    Neural Dev; 2015 Oct; 10():23. PubMed ID: 26492970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Pax protein Noi is required for commissural axon pathway formation in the rostral forebrain.
    Macdonald R; Scholes J; Strähle U; Brennan C; Holder N; Brand M; Wilson SW
    Development; 1997 Jun; 124(12):2397-408. PubMed ID: 9199366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal ganglion cell axon sorting at the optic chiasm requires dystroglycan.
    Clements R; Wright KM
    Dev Biol; 2018 Oct; 442(2):210-219. PubMed ID: 30149005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system.
    Plump AS; Erskine L; Sabatier C; Brose K; Epstein CJ; Goodman CS; Mason CA; Tessier-Lavigne M
    Neuron; 2002 Jan; 33(2):219-32. PubMed ID: 11804570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stromal cell-derived factor-1 antagonizes slit/robo signaling in vivo.
    Chalasani SH; Sabol A; Xu H; Gyda MA; Rasband K; Granato M; Chien CB; Raper JA
    J Neurosci; 2007 Jan; 27(5):973-80. PubMed ID: 17267551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The winged helix transcription factor Foxg1 facilitates retinal ganglion cell axon crossing of the ventral midline in the mouse.
    Pratt T; Tian NM; Simpson TI; Mason JO; Price DJ
    Development; 2004 Aug; 131(15):3773-84. PubMed ID: 15240555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of axon divergence at the optic chiasm in nogo-a knockout mice.
    Yu C; Sun X; Li J; Chan SO; Wang L
    Neurosci Lett; 2020 Jul; 731():135109. PubMed ID: 32492476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heparan sulfate proteoglycan expression in the optic chiasm of mouse embryos.
    Chung KY; Leung KM; Lin L; Chan SO
    J Comp Neurol; 2001 Jul; 436(2):236-47. PubMed ID: 11438927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heparan sulphation patterns generated by specific heparan sulfotransferase enzymes direct distinct aspects of retinal axon guidance at the optic chiasm.
    Pratt T; Conway CD; Tian NM; Price DJ; Mason JO
    J Neurosci; 2006 Jun; 26(26):6911-23. PubMed ID: 16807321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CXCL12 promotes the crossing of retinal ganglion cell axons at the optic chiasm.
    Le VH; Orniacki C; Murcia-Belmonte V; Denti L; Schütz D; Stumm R; Ruhrberg C; Erskine L
    Development; 2024 Jan; 151(2):. PubMed ID: 38095299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frizzled-3a and slit2 genetically interact to modulate midline axon crossing in the telencephalon.
    Hofmeister W; Devine CA; Rothnagel JA; Key B
    Mech Dev; 2012 Jul; 129(5-8):109-24. PubMed ID: 22609481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.