These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 3399455)

  • 1. Glial differentiation in the germinal layer of fetal and preterm infant brain: an immunocytochemical study.
    Gould SJ; Howard S
    Pediatr Pathol; 1988; 8(1):25-36. PubMed ID: 3399455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An immunohistochemical study of the germinal layer in the late gestation human fetal brain.
    Gould SJ; Howard S
    Neuropathol Appl Neurobiol; 1987; 13(6):421-37. PubMed ID: 3447071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radial glial interaction with cerebral germinal matrix capillaries in the fetal baboon.
    Bass T; Singer G; Slusser J; Liuzzi FJ
    Exp Neurol; 1992 Nov; 118(2):126-32. PubMed ID: 1426122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An immunocytochemical study of the germinal layer vasculature in the developing fetal brain using Ulex europaeus 1 lectin.
    Gould SJ; Howard S
    J Pathol; 1988 Oct; 156(2):129-35. PubMed ID: 3143816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional differentiation of the human fetal ependyma: immunocytochemical markers.
    Sarnat HB
    J Neuropathol Exp Neurol; 1992 Jan; 51(1):58-75. PubMed ID: 1371311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glial and neuronal differentiation in the human fetal brain 9-23 weeks of gestation.
    Wilkinson M; Hume R; Strange R; Bell JE
    Neuropathol Appl Neurobiol; 1990 Jun; 16(3):193-204. PubMed ID: 2402329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of intraventricular haemorrhage in the preterm infant.
    Hambleton G; Wigglesworth JS
    Arch Dis Child; 1976 Sep; 51(9):651-9. PubMed ID: 999324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of vimentin and glial fibrillary acidic protein in the developing rat spinal cord: an immunocytochemical study of the spinal cord glial system.
    Oudega M; Marani E
    J Anat; 1991 Dec; 179():97-114. PubMed ID: 1817147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neonatal disorders of germinal matrix.
    Raets MM; Dudink J; Govaert P
    J Matern Fetal Neonatal Med; 2015 Nov; 28 Suppl 1():2286-90. PubMed ID: 23968365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct modeling of blood flow through the vascular network of the germinal matrix.
    Botkin ND; Kovtanyuk AE; Turova VL; Sidorenko IN; Lampe R
    Comput Biol Med; 2018 Jan; 92():147-155. PubMed ID: 29175101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Astrocytes in the developing human brain. An immunohistochemical study.
    Roessmann U; Gambetti P
    Acta Neuropathol; 1986; 70(3-4):308-13. PubMed ID: 3766128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal nuclear antigen (NeuN): a marker of neuronal maturation in early human fetal nervous system.
    Sarnat HB; Nochlin D; Born DE
    Brain Dev; 1998 Mar; 20(2):88-94. PubMed ID: 9545178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of the cerebellum with particular reference to cellular differentiation in the external granular layer.
    Bell JE; Sandison A; Boddy J; Franks AJ; Batcup G; Calvert R; Gordon A
    Early Hum Dev; 1989 Jun; 19(3):199-211. PubMed ID: 2505998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of glial subpopulations in cultures of the ovine central nervous system.
    Elder GA; Potts BJ; Sawyer M
    Glia; 1988; 1(5):317-27. PubMed ID: 2852637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain.
    Levitt P; Rakic P
    J Comp Neurol; 1980 Oct; 193(3):815-40. PubMed ID: 7002963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Musashi1 antigen expression in human fetal germinal matrix development.
    Chan C; Moore BE; Cotman CW; Okano H; Tavares R; Hovanesian V; Pinar H; Johanson CE; Svendsen CN; Stopa EG
    Exp Neurol; 2006 Oct; 201(2):515-8. PubMed ID: 16777095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of layer I of the human cerebral cortex after midgestation: architectonic findings, immunocytochemical identification of neurons and glia, and in situ labeling of apoptotic cells.
    Spreafico R; Arcelli P; Frassoni C; Canetti P; Giaccone G; Rizzuti T; Mastrangelo M; Bentivoglio M
    J Comp Neurol; 1999 Jul; 410(1):126-42. PubMed ID: 10397400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Astrocyte end-feet in germinal matrix, cerebral cortex, and white matter in developing infants.
    El-Khoury N; Braun A; Hu F; Pandey M; Nedergaard M; Lagamma EF; Ballabh P
    Pediatr Res; 2006 May; 59(5):673-9. PubMed ID: 16627880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental events during the early stages of cerebral cortical neurogenesis in man. A correlative light, electron microscopic, immunohistochemical and Golgi study.
    Choi BH
    Acta Neuropathol; 1988; 75(5):441-7. PubMed ID: 2454011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development of the radial glial scaffold of the cerebellar cortex from GFAP-positive cells in the external granular layer.
    Sievers J; Pehlemann FW; Gude S; Hartmann D; Berry M
    J Neurocytol; 1994 Feb; 23(2):97-115. PubMed ID: 8195815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.